Abstract

We demonstrate the use of stable films containing PbS nanocrystals as media for self-adaptive phase filtering in phase contrast imaging of transparent objects by a cost-effective exploitation of nonlinear optical refraction in a simple, all-optical, and self-adjusting 4f imaging system. The optical nonlinearity is characterized by z-scan technique using a continuous wave He–Ne laser as the excitation source. The mechanism of nonlinearity in this case is mainly due to the nonlocal thermo-optical interaction between the laser beam and the sample. The value of nonlinear refractive index coefficient is found to be 3.5×107cm2/W. The nanocomposite material shows a thermal lens effect and is a potential candidate for phase contrast imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
    [CrossRef]
  2. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
    [CrossRef] [PubMed]
  3. K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30
  4. Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
    [CrossRef]
  5. A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
    [CrossRef]
  6. K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
    [CrossRef]
  7. K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
    [CrossRef]
  8. T. Y. Chang, J. H. Hong, and P. Yeh, “Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies,” Opt. Lett. 15, 743-745 (1990).
    [CrossRef] [PubMed]
  9. S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
    [CrossRef]
  10. A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
    [CrossRef] [PubMed]
  11. M. Y. Shih, A. Shishido, P. H. Chen, M. V. Wood, and I. C. Khoo, “All optical image processing with a supranonlinear dye-doped liquid-crystal film,” Opt. Lett. 25, 978-980(2000).
    [CrossRef]
  12. M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
    [CrossRef]
  13. H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
    [CrossRef] [PubMed]
  14. C. Sudhir, B. Georges, and M. Andre, “4f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273-279 (2004).
    [CrossRef]
  15. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
    [CrossRef] [PubMed]
  16. K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
    [CrossRef]
  17. K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
    [CrossRef]
  18. M. Y. Shih, A. Shishido, and I. C. Khoo, “All optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition- substraction,” Opt. Lett. 26, 1140-1142 (2001).
    [CrossRef]
  19. S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
    [CrossRef]
  20. S. Y. Chandra, W. Pengfei, K. Sri-Rajasekhar, D. V. G. L. N. Rao, R. K. Brian, S. S. Sivasankara, R. Gowrisankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14, 6157-6171 (2006).
    [CrossRef] [PubMed]
  21. L. Junmin, X. Jingjun, Z. Guangyin, and L. Simin, “Synchronous acousto-optic tuning of free-space external-cavity lasers,” Appl. Opt. 34, 4972-4975 (1995).
    [CrossRef]
  22. C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
    [CrossRef] [PubMed]
  23. A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
    [CrossRef]
  24. M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  25. L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987).
    [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  27. F. L. S. Cuppo, A. M. F. Neto, and S. L. Gomez, “Thermal lens model compared with the Sheik-Bahae formalism in interpreting z-scan experiments on lyotropic liquid crystals,” J. Opt. Soc. Am. B 19, 1342-1348 (2002).
    [CrossRef]
  28. A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
    [CrossRef]
  29. G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
    [CrossRef]
  30. J. Gluckstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268-282(2001).
    [CrossRef]
  31. D. Sanchez-de-la Llave and M. D. I. Castillo, “Inflence of illuminating beyond the object support on Zernike-type phase contrast filtering,” Appl. Opt. 41, 2607-2612 (2002).
    [CrossRef] [PubMed]

2008

C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
[CrossRef] [PubMed]

2007

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
[CrossRef]

2006

K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
[CrossRef]

S. Y. Chandra, W. Pengfei, K. Sri-Rajasekhar, D. V. G. L. N. Rao, R. K. Brian, S. S. Sivasankara, R. Gowrisankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14, 6157-6171 (2006).
[CrossRef] [PubMed]

2005

S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
[CrossRef]

2004

C. Sudhir, B. Georges, and M. Andre, “4f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273-279 (2004).
[CrossRef]

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

2002

2001

J. Gluckstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268-282(2001).
[CrossRef]

M. Y. Shih, A. Shishido, and I. C. Khoo, “All optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition- substraction,” Opt. Lett. 26, 1140-1142 (2001).
[CrossRef]

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

2000

1999

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
[CrossRef] [PubMed]

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

1998

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

1995

1990

T. Y. Chang, J. H. Hong, and P. Yeh, “Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies,” Opt. Lett. 15, 743-745 (1990).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1987

L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987).
[CrossRef]

1983

G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
[CrossRef]

1976

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

1955

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Andre, M.

Bertrand, L.

G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Brian, R. K.

Castillo, M. D. I.

D. Sanchez-de-la Llave and M. D. I. Castillo, “Inflence of illuminating beyond the object support on Zernike-type phase contrast filtering,” Appl. Opt. 41, 2607-2612 (2002).
[CrossRef] [PubMed]

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Chandra, S. Y.

Chang, T. Y.

Chen, P. H.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Cuppo, F. L. S.

DeCristofano, B. S.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Fajardo, L. L.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
[CrossRef] [PubMed]

Garcia, R. R.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Georges, B.

Gersho, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

Gluckstad, J.

Gomez, S. L.

Gonzalez, L. A.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gowrisankar, R.

Guangyin, Z.

Gullard, R.

K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Harada, K.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Hong, J. H.

Itoh, M.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Jackie, Y. Y.

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

Jingjun, X.

Junmin, L.

Kadish, K.

K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30

Kajzar, F.

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Kaladevi, S.

S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Khoo, I. C.

Kimball, B. R.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Komorowska, K.

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Kothapalli, S.

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

Kothiyal, M. P.

K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
[CrossRef]

K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
[CrossRef]

S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
[CrossRef]

Kotova, S.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Lepoutre, F.

G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
[CrossRef]

Liu, H.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
[CrossRef] [PubMed]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Miniewicz, A.

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Miranda, L. C. M.

L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987).
[CrossRef]

Mogensen, P. C.

Nakashima, M.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Naumov, A.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Nessel, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Neto, A. M. F.

Nir, T.

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

Olivos-Perez, L. I.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Panchangam, A.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Parfenov, A.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Parka, J.

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Pengfei, W.

Perondi, L. F.

L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987).
[CrossRef]

Peter, K. H. H.

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

Philips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Pushpa, A. K.

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

Rao, D. V. G. L. N.

C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
[CrossRef] [PubMed]

S. Y. Chandra, W. Pengfei, K. Sri-Rajasekhar, D. V. G. L. N. Rao, R. K. Brian, S. S. Sivasankara, R. Gowrisankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14, 6157-6171 (2006).
[CrossRef] [PubMed]

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Reji, P.

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

Richard, H. F.

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

Rodriguez-Ortiz, M.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Rosencwaig, A.

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

Rousset, G.

G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Sanchex-de-la-Llave, D.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Sanchez-de-la Llave, D.

Sastry, K. V. L. N.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

Sathiyamoorthy, K.

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

Sendhil, K.

K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Shih, M. Y.

Shishido, A.

Simin, L.

Sivaramakrishnan, S.

Sivasankara, S. S.

Smith, K.

K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30

Sri-Rajasekhar, K.

Sri-Rajesekhar, K.

C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
[CrossRef] [PubMed]

Stephen, D. T.

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

Suchand, C. S. S.

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

Sudhir, C.

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Vijayan, C.

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
[CrossRef]

K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
[CrossRef]

S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
[CrossRef]

Wei, J.

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

Wei, T. M.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wood, M. V.

Wu, P.

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

Xu, J.

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
[CrossRef] [PubMed]

Yatagai, T.

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Yeh, P.

Yelleswarapu, C.

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

Yelleswarapu, C. S.

C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
[CrossRef] [PubMed]

Yingly, Q.

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

Yuangang, Z.

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Q. Yingly, J. Wei, Z. Yuangang, and Y. Y. Jackie, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90, 133112 (2007).
[CrossRef]

S. Kothapalli, P. Wu, C. Yelleswarapu, and D. V. G. L. N. Rao, “Medical image processing using transient Fourier holography in bacteriorhodopsin films,” Appl. Phys. Lett. 85, 5836-5838 (2004).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. M. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Appl. Phys.

L. F. Perondi and L. C. M. Miranda, “Minimal volume photoacoustic cell measurement of thermal diffusivity: Effect of thermoelastic sample bending,” J. Appl. Phys. 62, 2955-2959(1987).
[CrossRef]

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addresed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids,” J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

G. Rousset, F. Lepoutre, and L. Bertrand, “Influence of thermoelastic blending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383 (1983).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

K. Sathiyamoorthy, C. Vijayan, and M. P. Kothiyal, “Low power optical limiter based on a new nanocomposite material incorporating silica-encapsulated pthalocyanine in Nafion,” J. Phys. D 40, 6121-6128 (2007).
[CrossRef]

Med. Phys.

A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, “Processing of medical images using real- time optical fourier processing, ” Med. Phys. 28, 22-27 (2001).
[CrossRef] [PubMed]

H. Liu, J. Xu, and L. L. Fajardo, “Optical processing architecture for analog and digital radiography,” Med. Phys. 26, 648-652 (1999).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

A. K. Pushpa, C. Vijayan, K. Sathiyamoorthy, C. S. S. Suchand, and P. Reji, “Excitonic transitions and off-resonant optical limiting in CdS quantum dots stabilized in a synthetic glue matrix,” Nanoscale Res. Lett. 2, 561-568(2007).
[CrossRef]

Nanotechnology

A. K. Pushpa, C. Vijayan, C. S. S. Suchand, P. Reji, and K. Sathiyamoorthy, “Two-photon-assisted excited state absorption in nanocomposite films of PbS stabilized in a synthetic glue matrix,” Nanotechnology 18, 075708 (2007).
[CrossRef]

Opt. Commun.

C. S. Yelleswarapu, K. Sri-Rajesekhar, and D. V. G. L. N. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun. 281, 1876-1888(2008).
[CrossRef] [PubMed]

S. Kaladevi, C. Vijayan, and M. P. Kothiyal,” Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor,” Opt. Commun. 251, 292-298 (2005).
[CrossRef]

Opt. Eng.

M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, “Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film,” Opt. Eng. 40, 2367-2368 (2001).
[CrossRef]

Opt. Express

Opt. Laser Technol.

K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512-515 (2006).
[CrossRef]

K. Harada, M. Itoh, S. Kotova, A. Naumov, A. Parfenov, and T. Yatagai, “Nonlinear image self-filtering with liquid crystal spatial light modulator,” Opt. Laser Technol. 30, 147-155(1998).
[CrossRef]

Opt. Lett.

Science

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

K. H. H. Peter, D. T. Stephen, H. F. Richard, and T. Nir, “All-polymer optoelectronic devices,” Science 285, 233-236 (1999).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nessel, I. D. Philips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Other

K. Kadish, K. Smith, and R. Gullard, The Porphyrin Handbook, Vol. 6 (Academic, 2000), Chap. 4, p. 30

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Closed z-scan trace for the PbS NC sample at an input power of 10 mW . The solid line shows the theoretical fit using the thermal lens model [Eq. (2)].

Fig. 2
Fig. 2

Phase dependence of the PA signal on chopping frequency for the sample. The solid line shows the theoretical fit using Eq. (12)..

Fig. 3
Fig. 3

Experimental setup for phase contrast imaging using the 4 f configuration. IP, input plane; OP, output plane; FP, Fourier plane; L 1 , L 2 , lenses.

Fig. 4
Fig. 4

(a) Unfiltered image of the phase object. (b) Filtered image of the phase object using PbS NC film as the phase filter.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n = n o + n 2 I ,
T ( z , t ) = 1 1 + ( θ 1 + t c / 2 t ) 2 x 1 + x 2 + ( θ 1 + t c / 2 t ) 2 1 1 + x 2 ,
θ = 2 π d λ n 2 I ,
n 2 ther = α o ω o 2 4 D ρ C ( d n d T ) .
P fl = γ P o I o ( α g D ) 1 / 2 2 π l g T o k s f e j ( ω t π / 2 ) sinh ( l s σ s ) ,
P fl γ P o I o ( α g D ) 1 / 2 π T o l g k s e l s π f / D f e j ( ω t π / 2 l s a s ) .
A = 1 f exp ( a f ) ,
ϕ = π / 2 a f .
P fel = 3 α T R 4 γ P o I o R c 2 l s 2 l g k s σ s 2 ( cosh ( l s σ s ) ( l s σ s / 2 ) sinh ( l s σ s ) 1 l s σ s sinh ( l s σ s ) ) e j ω t ,
P fel α T R 4 γ P o I o 8 R c 2 l g k s exp [ j ( ω t + π ) ] .
P fel 3 α T R 4 γ P o I o α s 4 π R c 2 I s 2 l g k s f [ ( 1 1 l s a s ) 2 + 1 ( l s a s ) 2 ] 1 / 2 exp [ j ( ω t + π / 2 + ϕ ) ] ,
ϕ π 2 + arctan [ 1 ( l s ( π f / D ) 1 / 2 1 ) ] .
e i ϕ = 1 + i ϕ 1 2 ϕ 2 1 6 i ϕ 3 + .
exp [ i ϕ ( x , y ) ] = ( Ω d x d y ) 1 Ω exp [ i ϕ ( x , y ) ] d x d y + higher frequency terms ,

Metrics