Abstract

We present an adaptive feature-specific imaging (AFSI) system for application to an M-class recognition task. The proposed system uses nearest-neighbor-based density estimation to compute the (non- Gaussian) class-conditional densities. We refine the density estimates based on the training data and the knowledge from previous measurements at each step. The projection basis for the AFSI system is also adapted based on the previous measurements at each step. The decision-making process is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of error (Pe) and we compare the AFSI system with an adaptive-conventional (ACONV) system. The AFSI system exhibits significant improvement compared to the ACONV system at low signal-to-noise ratio (SNR), and it is shown that, for an M=4 hypotheses, SNR=10dB, and a desired Pe=102, the AFSI system requires 30 times fewer measurements than the ACONV system. Experimental results validating the AFSI system are presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription