Abstract

We demonstrate time-delay switches using the first-order dynamic diffraction light of two-beam coupled light with wavelengths of 632.8, 650, 532, and 488nm in a bacteriorhodopsin film. The optimal wavelengths are selected and the relationship between incident intensity and delay time is discussed. A switch delay time ranging from 3.52 to 12.5s is presented by the 632.8nm wavelength , while a delay time ranging from 1.24 to 10.6s is demonstrated by the 488nm wavelength . On the other hand, the wavelengths of 532 and 650nm are not suitable for time-delay switches due to the large variation of first-order diffraction intensity for lower incident intensities.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okamoto, I. Yamaguchi, and K. Yamagata, “Real-time enhancement of defects in periodic patterns by use of a bacteriorhodopsin film,” Opt. Lett. 22, 337-339 (1997).
    [CrossRef] [PubMed]
  2. G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
    [CrossRef]
  3. D. Sánchez-de-la-Llave and M. A. Fiddy, “Incoherent-to-coherent conversion and square-law transmission based on photoinduced birefringence in bacteriorhodopsin films,” Appl. Opt. 38, 815-821 (1999).
    [CrossRef]
  4. Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004).
    [CrossRef]
  5. M. Sanio, U. Settle, K. Abderle, and N. Hampp, “Optically addressed direct-view display based on bacteriorhodopsin,” Opt. Lett. 24, 379-381 (1999).
    [CrossRef]
  6. D. N. Rao, C. Yelleswarapu, S.-R. Kothapalli, D. Rao, and B. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 11, 2848-2853(2003).
    [CrossRef] [PubMed]
  7. Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
    [CrossRef]
  8. C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003).
    [CrossRef]
  9. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
    [CrossRef]
  10. Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004).
    [CrossRef] [PubMed]
  11. Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
    [CrossRef]
  12. G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
    [CrossRef]
  13. W. D. Koek, N. Bhattacharya, and J. J. M. Braat, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101-103 (2004).
    [CrossRef] [PubMed]
  14. G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
    [CrossRef]
  15. G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
    [CrossRef]
  16. G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
    [CrossRef]
  17. G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
    [CrossRef]
  18. C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005).
    [CrossRef] [PubMed]
  19. G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
    [CrossRef] [PubMed]
  20. R. R. Birge, “The nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
    [CrossRef] [PubMed]
  21. D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).
  22. A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
    [CrossRef]
  23. H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  24. J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780-5789 (1996).
    [CrossRef] [PubMed]
  25. L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
    [CrossRef]
  26. G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
    [CrossRef]
  27. N. Hammp and T. Juchem, “Improvement of the diffraction efficiency and kinetics of holographic gratings in photochromic media by auxiliary light,” Opt. Lett. 29, 2911-2913 (2004).
    [CrossRef]
  28. B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
    [CrossRef]
  29. G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
    [CrossRef]
  30. G. R. Kumar, B. P. Singh, and K. K. Sharma, “Continuous-wave self-diffraction in dye-doped glasses,” J. Opt. Soc. Am. B 8, 2119-2127 (1991)
    [CrossRef]
  31. A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
    [CrossRef]
  32. J. D. Dowine and D. A. Timucin, “Modeling the grating-formation process in thick bacteriorhodopsin films,” Appl. Opt. 37, 2102-2111 (1998).
    [CrossRef]
  33. G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
    [CrossRef]

2008 (2)

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

2007 (1)

A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
[CrossRef]

2006 (4)

G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef] [PubMed]

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

2005 (5)

C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005).
[CrossRef] [PubMed]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

2004 (5)

2003 (3)

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003).
[CrossRef]

D. N. Rao, C. Yelleswarapu, S.-R. Kothapalli, D. Rao, and B. Kimball, “Self-diffraction in bacteriorhodopsin films for low power optical limiting,” Opt. Express 11, 2848-2853(2003).
[CrossRef] [PubMed]

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

2002 (1)

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1996 (2)

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

J. D. Downie and D. T. Smithey, “Measurements of holographic properties of bacteriorhodopsin films,” Appl. Opt. 35, 5780-5789 (1996).
[CrossRef] [PubMed]

1995 (1)

L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
[CrossRef]

1991 (1)

1990 (1)

R. R. Birge, “The nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

1987 (1)

A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
[CrossRef]

1971 (1)

D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).

1969 (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Abderle, K.

Bhattacharya, N.

Birge, R. R.

R. R. Birge, “The nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

Braat, J. J. M.

Chen, G. Y.

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef] [PubMed]

C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005).
[CrossRef] [PubMed]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

Chen, K.

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

Chen, L. J.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Cristofano, B S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Dovgalenko, G. E.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Dowine, J. D.

Downie, J. D.

Fiddy, M. A.

Gao, P.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Gilliland, G. D.

A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
[CrossRef]

Guo, Z.

Guo, Z. X.

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

Hammp, N.

Hampp, N.

Han, J. H.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Huang, Y. H.

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004).
[CrossRef]

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004).
[CrossRef] [PubMed]

Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Imam, H.

L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
[CrossRef]

Juchem, T.

Kimball, B.

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Klotz, M.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Koek, W. D.

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Koklyushkin, A. V.

A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
[CrossRef]

Korolev, A. E.

A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
[CrossRef]

Kothapalli, S.-R.

Kozhevnikov, N. M.

A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
[CrossRef]

Kumar, G. R.

Lei, M.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Li, Y. D.

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

Liang, X.

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

Lindvold, L. R.

L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
[CrossRef]

Moharam, M. G.

Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Oesterhelt, D.

D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).

Okamoto, T.

Powell, R. C.

A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
[CrossRef]

Qi, S. W.

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

Ramanujam, P. S.

L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
[CrossRef]

Rao, D.

Rao, D. N.

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Roy, S.

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003).
[CrossRef]

Salamo, G. J.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Sánchez-de-la-Llave, D.

Sanio, M.

Settle, U.

Shang, X. D.

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

Sharma, K. K.

Siganakis, G.

Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Singh, B. P.

Singh, C. P.

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003).
[CrossRef]

Smithey, D. T.

Song, Q W.

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

Song, Q. W.

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef] [PubMed]

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005).
[CrossRef] [PubMed]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

Stoeckenius, W.

D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).

Suchocki, A.

A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
[CrossRef]

Sun, Q.

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

Tian, J.

Tian, J. G.

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

Timucin, D. A.

Wang, X.

Wang, X. Y.

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

Wang, Y. L.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Wei, X.

Wood, G. L.

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Wu, P.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Wu, S. T.

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004).
[CrossRef] [PubMed]

Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004).
[CrossRef]

Xu, T.

G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef] [PubMed]

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

Xu, X. X.

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

Yamagata, K.

Yamaguchi, I.

Yang, G.

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

Yao, B. L.

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Yelleswarapu, C.

Yuan, Y. Z.

Zhang, C. P.

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

G. Y. Chen, Y. Z. Yuan, T. Xu, C. P. Zhang, and Q. W. Song, “All-optical time delay relay based on bacteriorhodopsin,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef] [PubMed]

C. P. Zhang, G. Y. Chen, X. Wei, Z. Guo, J. Tian, X. Wang, G. Zhang, and Q. W. Song,, “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett. 30, 81-83 (2005).
[CrossRef] [PubMed]

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

Zhang, G.

Zhang, G. Y.

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

Zhao, C. M.

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

Zhao, Y. Y.

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004).
[CrossRef]

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Y. H. Huang, S. T. Wu, and Y. Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028-2030 (2004).
[CrossRef]

G. E. Dovgalenko, M. Klotz, G. J. Salamo, and G. L. Wood, “Optically induced birefringence in bacteriorhodopsin as an optical limiter,” Appl. Phys. Lett. 68, 287-289 (1996).
[CrossRef]

Y. H. Huang, G. Siganakis, M. G. Moharam, and S. T. Wu, “Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film,” Appl. Phys. Lett. 85, 5445-5447 (2004).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. Cristofano, “Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888-3890 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory of thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Biochim. Biophys. Acta (1)

R. R. Birge, “The nature of the primary photochemical events in rhodopsin and bacteriorhodopsin,” Biochim. Biophys. Acta 1016, 293-327 (1990).
[CrossRef] [PubMed]

Chin. Phys. (2)

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, G. Y. Zhang, and Q. W. Song, “All-optical gate based on bacteriorhodopsin film,” Chin. Phys. 14, 774-778 (2005).
[CrossRef]

G. Y. Chen, X. X. Xu, C. P. Zhang, S. W. Qi, and Q. W. Song, “An all-optical time-delay relay based on a bacteriorhodopsin film,” Chin. Phys. 17, 4218-4225 (2008).
[CrossRef]

J. Appl. Phys. (1)

G. Y. Chen, C. P. Zhang, Z. X. Guo, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates based on two coupled waves in bacteriorhodopsin,” J. Appl. Phys. 98, 044504(2005).
[CrossRef]

J. Mod. Opt. (1)

G. Yang, G. Y. Chen, X. LiangC. P. Zhang, J. G. Tian, C. M. Zhao, and Q. W. Song, “The influence of the velocity and the size of an object on the quality of an optical novelty filter designed using a bacteriorhodopsin film,” J. Mod. Opt. 53, 1177-1185 (2006)
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) New Biol. (1)

D. Oesterhelt and W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of halobacterium halobium,” Nature (London) New Biol. 233, 149-152 (1971).

Opt. Commun. (4)

G. Y. Chen, C. P. Zhang, X. D. Shang, Z. X. Guo, X. Y. Wang, J. G. Tian, and Q. W. Song, “Real-time intensity dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film,” Opt. Commun. 249, 563-568 (2005).
[CrossRef]

C. P. Singh and S. Roy, “All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates,” Opt. Commun. 218, 55-66(2003).
[CrossRef]

G. Y. Chen, T. Xu, C. P. Zhang, and Q W. Song, “Dynamic diffraction behaviors of bacteriorhodopsin film at 532 nm,” Opt. Commun. 264, 229-234 (2006).
[CrossRef]

B. L. Yao, J. H. Han, P. Gao, L. J. Chen, Y. L. Wang, and M. Lei, “Influence of auxiliary violet light on holographic kinetics at low and high recording intensities in bacteriorhodopsin film,” Opt. Commun. 281, 2380-2384 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Opt. Mater. (2)

G. Y. Chen, C. P. Zhang, T. Xu, J. G. Tian, and Q. W. Song, “the relations between incident intensities and behaviors of two-wave coupled dynamic diffraction in a thick bacteriorhodopsin film,” Opt. Mater. 29, 416-420 (2006).
[CrossRef]

Y. D. Li, Q. Sun, J. G. Tian, and G. Y. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285-288 (2003).
[CrossRef]

Opt. Rev. (1)

L. R. Lindvold, H. Imam, and P. S. Ramanujam, “Spatial frequency response and transient anisotropy of bacteriorhodopsin thin films,” Opt. Rev. 2, 32-38 (1995).
[CrossRef]

Opt. Spectrosc. (1)

A. V. Koklyushkin, A. E. Korolev, and N. M. Kozhevnikov, “Analysis of the recording efficiency of dynamic gratings in bacteriorhodopsin with the help of differential absorption spectra,” Opt. Spectrosc. 102, 307-313 (2007).
[CrossRef]

Optik (Jena) (1)

G. Y. Chen, Z. X. Guo, K. Chen, C. P. Zhang, J. G. Tian, and Q. W. Song, “Time dependent all-optical logic-gates with bacteriorhodopsin,” Optik (Jena) 116, 227-231 (2005).
[CrossRef]

Phys. Rev. B (1)

A. Suchocki, G. D. Gilliland, and R. C. Powell, “Four-wave mixing measurements of energy migration and radiationless relaxation processes in alexandrite crystals,” Phys. Rev. B 35, 5830-5840 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectrum.

Fig. 2
Fig. 2

Scheme of the experiment for first-order diffraction. P1 and P2, polarizers; A, attenuators.

Fig. 3
Fig. 3

Diffraction efficiency as a function of grating writing time for incident wavelengths of 633, 488, 650, and 533 nm , respectively. (a) For wavelength 633 nm , curves 1, 2, 3, and 4 correspond to incident intensities of 0.480, 0.930, 1.36, and 4.74 mW / cm 2 , respectively. (b) For wavelength 488 nm , curves 1, 2, 3, 4, and 5 correspond to incident intensities of 2.35, 2.45, 2.70, 3.07, and 3.60 mW / cm 2 , respectively. (c) For wavelength 650 nm , curves 1, 2, and 3 correspond to incident intensities of 1.15, 2.43, and 4.91 mW / cm 2 , respectively. (d) For wavelength 533 nm , curves 1, 2 and 3 correspond to incident intensities of 2.57, 3.74, and 4.68 mW / cm 2 , respectively.

Fig. 4
Fig. 4

Principle of the time-delay switch; the curve is the normalized diffraction intensity with the same data as curve 1 in Fig. 3a.

Fig. 5
Fig. 5

Delay time as a function of incident intensity. Circles are for 632.8 nm ; triangles, for 488 nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I in T { J 1 2 [ ϕ 1 ] + J 1 + 1 2 [ ϕ 1 ] } ,
ϕ 1 = 2 n 1 k 0 L cos θ sin ( 1 2 K L tan θ ) 1 2 K L tan θ .
I ( y ) = 2 I 0 [ 1 + sin ( 2 π y / Λ ) ] .
n 1 = ( n 2 + 2 ) 2 6000 n k 1 I T k 1 I T + k 3 i O D ( 570 ) ε 1 ( 570 ) L Δ R ,
η ( λ , R ) = η P ( λ , R ) + η A ( λ , R ) = ( α 1 ( λ , R ) d 4 ) 2 T ( λ , R ) + ( π n 1 ( λ , R ) d λ ) 2 T ( λ , R ) ,

Metrics