Abstract

Accurate automated alignment of laser beams in the National Ignition Facility (NIF) is essential for achieving extreme temperature and pressure required for inertial confinement fusion. The alignment achieved by the integrated control systems relies on algorithms processing video images to determine the position of the laser beam images in real time. Alignment images that exhibit wide variations in beam quality require a matched-filter algorithm for position detection. One challenge in designing a matched-filter-based algorithm is to construct a filter template that is resilient to variations in imaging conditions while guaranteeing accurate position determination. A second challenge is to process images for thousands of templates in under a second, as may be required in future high-energy laser systems. This paper describes the development of a new analytical template that captures key recurring features present in the beam image to accurately estimate the beam position under good image quality conditions. Depending on the features present in a particular beam, the analytical template allows us to create a highly tailored template containing only those selected features. The second objective is achieved by exploiting the parallelism inherent in the algorithm to accelerate processing using parallel hardware that provides significant performance improvement over conventional processors. In particular, a Xilinx Virtex II Pro field programmable gate array (FPGA) hardware implementation processing 32 templates provided a speed increase of about 253 times over an optimized software implementation running on a 2.2GHz AMD Opteron core.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses and C. R. Wuest, “The National Ignition Facility: laser performance and first experiments.,” Fusion Sci. Technol. 47, 314-322 (2005).
  2. E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).
  3. E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).
  4. R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
    [CrossRef]
  5. K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF
  6. C. A. Haynam, P. J. Wegner,et al., “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303(2007).
    [CrossRef] [PubMed]
  7. National Ignition Facility and Photon Science, “LIFE: clean energy from nuclear waste,” https://lasers.llnl.gov/missions/energy_for_the_future/life/.
  8. R. Irwan and R. G. Lane, “Analysis of optimal centroid estimation applied to Shack-Hartmann sensing,” Appl. Opt. 38, 6737-6743 (1999).
    [CrossRef]
  9. Z. Jiang, S. Gong, and Y. Dang, “Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor,” Opt. Laser Technol. 38, 614-619 (2006).
    [CrossRef]
  10. J. Arines and J. Ares, “Minimum variance centroid thresholding,” Opt. Lett. 27, 497-499 (2002).
    [CrossRef]
  11. S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002).
    [CrossRef]
  12. A. A. S. Awwal, Wilbert A. McClay, W. S. Ferguson, J. V. Candy, T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038-3048 (2006).
    [CrossRef] [PubMed]
  13. A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
    [CrossRef]
  14. A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
    [CrossRef]
  15. A. B. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964).
    [CrossRef]
  16. J. L. Horner and J. Leger, “Pattern recognition with binary phase-only filters,” Appl. Opt. 24, 609-611 (1985).
    [CrossRef] [PubMed]
  17. A. A. S. Awwal, M. A. Karim, and S. R. Jahan, “Improved correlation discrimination using an amplitude-modulated phase-only filter,” Appl. Opt. 29, 233-236 (1990).
    [CrossRef] [PubMed]
  18. M. A. Karim and A. A. S. Awwal, Optical Computing: An Introduction (Wiley, 1992).
  19. A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
    [CrossRef]
  20. “FFT code and related material,” http://www.jjj.de/fft.

2009

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
[CrossRef]

2008

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

2007

A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
[CrossRef]

C. A. Haynam, P. J. Wegner,et al., “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276-3303(2007).
[CrossRef] [PubMed]

2006

2005

E. I. Moses and C. R. Wuest, “The National Ignition Facility: laser performance and first experiments.,” Fusion Sci. Technol. 47, 314-322 (2005).

2004

R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

2002

J. Arines and J. Ares, “Minimum variance centroid thresholding,” Opt. Lett. 27, 497-499 (2002).
[CrossRef]

S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002).
[CrossRef]

1999

1997

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

1990

1985

1978

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

1964

A. B. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964).
[CrossRef]

Ares, J.

Arines, J.

Awwal, A.

A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
[CrossRef]

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Awwal, A. A. S.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
[CrossRef]

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

A. A. S. Awwal, Wilbert A. McClay, W. S. Ferguson, J. V. Candy, T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038-3048 (2006).
[CrossRef] [PubMed]

A. A. S. Awwal, M. A. Karim, and S. R. Jahan, “Improved correlation discrimination using an amplitude-modulated phase-only filter,” Appl. Opt. 29, 233-236 (1990).
[CrossRef] [PubMed]

M. A. Karim and A. A. S. Awwal, Optical Computing: An Introduction (Wiley, 1992).

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Bliss, E.

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

Bliss, E. S.

R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Candy, J. V.

Chang, S.

S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002).
[CrossRef]

Dang, Y.

Z. Jiang, S. Gong, and Y. Dang, “Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor,” Opt. Laser Technol. 38, 614-619 (2006).
[CrossRef]

Ferguson, S. W.

A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
[CrossRef]

Ferguson, W.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Ferguson, W. S.

Gong, S.

Z. Jiang, S. Gong, and Y. Dang, “Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor,” Opt. Laser Technol. 38, 614-619 (2006).
[CrossRef]

Grover, C. P.

S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002).
[CrossRef]

Haynam, C. A.

Holloway, F.

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

Horner, J. L.

Horowitz, B.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Irwan, R.

Jahan, S. R.

Jiang, Z.

Z. Jiang, S. Gong, and Y. Dang, “Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor,” Opt. Laser Technol. 38, 614-619 (2006).
[CrossRef]

Johnson, B.

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

Karim, M. A.

Lane, R. G.

Law, C.

A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
[CrossRef]

Leach, R.

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

Leger, J.

McClay, Wilbert A.

Miller Kamm, V.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Miller-Kamm, V.

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

Moses, E. I.

E. I. Moses and C. R. Wuest, “The National Ignition Facility: laser performance and first experiments.,” Fusion Sci. Technol. 47, 314-322 (2005).

Reynolds, C.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Rice, K. L.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
[CrossRef]

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

Salmon, T.

Spann, J.

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

Stout, E.

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

Summers, M.

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

Taha, T. M.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
[CrossRef]

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

Van Arsdall, P.

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

Vander Lugt, A. B.

A. B. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964).
[CrossRef]

Wegner, P.

Wegner, P. J.

Wilhelmsen, K.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

Wuest, C. R.

E. I. Moses and C. R. Wuest, “The National Ignition Facility: laser performance and first experiments.,” Fusion Sci. Technol. 47, 314-322 (2005).

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Appl. Opt.

Fusion Sci. Technol.

E. I. Moses and C. R. Wuest, “The National Ignition Facility: laser performance and first experiments.,” Fusion Sci. Technol. 47, 314-322 (2005).

IEEE Trans. Inf. Theory

A. B. Vander Lugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139-145 (1964).
[CrossRef]

J. Opt. Soc. Am.

E. Bliss, M. Summers, F. Holloway, and B. Johnson, “Shiva alignment systems,” J. Opt. Soc. Am. 68, 547-547 (1978).

Opt. Eng.

R. A. Zacharias, N. R. Beer, E. S. Bliss,et al., “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

S. Chang and C. P. Grover, “Centroid detection based on optical correlation,” Opt. Eng. 41, 2479-2486 (2002).
[CrossRef]

Opt. Laser Technol.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193-197 (2009).
[CrossRef]

Z. Jiang, S. Gong, and Y. Dang, “Numerical study of centroid detection accuracy for Shack-Hartmann wavefront sensor,” Opt. Laser Technol. 38, 614-619 (2006).
[CrossRef]

Opt. Lett.

Proc. SPIE

E. Stout, V. Miller-Kamm, J. Spann, and P. Van Arsdall, “Prototype distributed object-oriented architecture for image-based automatic laser alignment,” Proc. SPIE 3047, 214-221(1997).

A. A. S. Awwal, R. Leach, K. L. Rice, and T. M. Taha, “Higher accuracy template for corner cube reflected image,” Proc. SPIE 7072, 70720V (2008).
[CrossRef]

A. Awwal, S. W. Ferguson, and C. Law “Uncertainty detection for NIF normal pointing images,” Proc. SPIE 6695, 66950R (2007).
[CrossRef]

Other

“FFT code and related material,” http://www.jjj.de/fft.

M. A. Karim and A. A. S. Awwal, Optical Computing: An Introduction (Wiley, 1992).

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller Kamm, and C. Reynolds, “Automatic alignment system for The National Ignition Facility,” Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07), 486-490 (ICALEPCS, 2007), http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02. PDF

National Ignition Facility and Photon Science, “LIFE: clean energy from nuclear waste,” https://lasers.llnl.gov/missions/energy_for_the_future/life/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Good quality image, (b) fuzzy images.

Fig. 2
Fig. 2

(a) Binary template for fuzzy images, (b) gray level template for good quality images.

Fig. 3
Fig. 3

Diagram depicting the connections between the AMD core and our image correlation FPGA implementation.

Fig. 4
Fig. 4

Block diagram of the FPGA image correlation operations: the boxes labeled “sw” are switches, the shaded boxes are memory buffers, and the remaining boxes are computational modules. This figure shows the flow of input data (stored in g0 and g1) as it is processed through the prephase Sobel edge detection and four computation phases. The processing results are stored in Max 5 as output. A description of this process is given in Subsection 4B.

Fig. 5
Fig. 5

Sample and template images used for testing: The sample has a diameter of 40 pixels. Five versions of each template were generated with diameters of 32, 37, 41, 45, and 49 pixels.

Tables (2)

Tables Icon

Table 1 FPGA Output of Absolute Value of Peak ( × 10 9 ) in the Correlation of the Sample and Template Images Shown in Fig. 5 a

Tables Icon

Table 2 Sample Image Centroid Location Calculated Based on FPGA and MATLAB Outputs a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F ( U x , U y ) = | F ( U x , U y ) | exp ( j Φ ( U x , U y ) ) ,
G ( U x , U y ) = | G ( U x , U y ) | exp ( j Ψ ( U x , U y ) ) .
H CMF ( U x , U y ) = F * ( U x , U y ) = | F ( U x , U y ) | exp ( j Φ ( U x , U y ) ) .
C CMF ( Δ x , Δ y ) = F 1 { G ( U x , U y ) H CMF ( U x , U y ) } .
x pos = x cross x auto + x c ,
y pos = y cross y auto + y c ,

Metrics