Abstract

Grinding, lapping, and polishing are finishing processes used to achieve critical surface parameters in a variety of precision optical and electronic components. As these processes remove material from the surface through mechanical and chemical interactions, they may induce a damaged layer of cracks, voids, and stressed material below the surface. This subsurface damage (SSD) can degrade the performance of a final product by creating optical aberrations due to diffraction, premature failure in oscillating components, and a reduction in the laser induced damage threshold of high energy optics. As these defects lie beneath the surface, they are difficult to detect, and while many methods are available to detect SSD, they can have notable limitations regarding sample size and type, preparation time, or can be destructive in nature. The authors tested a nondestructive method for assessing SSD that consisted of tagging the abrasive slurries used in lapping and polishing with quantum dots (nano-sized fluorescent particles). Subsequent detection of fluorescence on the processed surface is hypothesized to indicate SSD. Quantum dots that were introduced to glass surfaces during the lapping process were retained through subsequent polishing and cleaning processes. The quantum dots were successfully imaged by both wide field and confocal fluorescence microscopy techniques. The detected fluorescence highlighted features that were not observable with optical or interferometric microscopy. Atomic force microscopy and additional confocal microscope analysis indicate that the dots are firmly embedded in the surface but do not appear to travel deep into fractures beneath the surface. Etching of the samples exhibiting fluorescence confirmed that SSD existed. SSD-free samples exposed to quantum dots did not retain the dots in their surfaces, even when polished in the presence of quantum dots.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” paper presented at the ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, Arizona, 25-27 April 1989.
  2. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
    [CrossRef]
  3. J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
    [CrossRef]
  4. B. R. Lawn and T. R. Wilshaw, “Review indentation fracture: principles and applications,” J. Mater. Sci. Technol. (Sofia) 10, 1049-1081 (1975).
  5. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152-171 (1990).
    [CrossRef]
  6. F. P. Bowden and T. P. Hughes, “Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer,” Proc. R. Soc. London Ser. A 160, 575-587(1937).
    [CrossRef]
  7. N. K. Adam, “The polishing of surfaces,” Nature 119, 162-163(1927).
    [CrossRef]
  8. A. A. Griffith, “The phenomona of rupture and flow in solids,” Phil. Trans. R. Soc. London Ser. A 221, 163-198 (1921).
    [CrossRef]
  9. J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
    [CrossRef]
  10. D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
    [CrossRef]
  11. E. Brinksmeier, “State of the art of nondestructive measurement of subsurface material properties and damages,” Precis. Eng. 11, 211-224 (1989).
    [CrossRef]
  12. A. Lindquist, S. D. Jacobs, and A. Feltz, “Surface preparations for rapid measurement of subsurface damage depth,” presented at the OSA Science of Optical Finishing Topical Meeting, Monterey, California (1990).
  13. “Quantum dots features,” (Evident Technologies, 2008), http://www.evidenttech.com/quantum-dots-explained/quantum-dot-features.html, retrieved 14 April 2008.
  14. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
    [CrossRef]
  15. B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
    [CrossRef]
  16. “Nanomaterials catalog,” (Evident Technologies, 2005), Vol. 7.
  17. R. A. Bowling, “A theoretical review of particle adhesion," in Particle on Surface. I. Detection, Adhesion, and Removal, K. L. Mittal, ed. (Plenum, 1988), pp. 129-142.
  18. M. Wautelet, “Scaling laws in the macro-, micro- and nanoworlds,” Eur. J. Phys. 22, 601-611 (2001).
    [CrossRef]
  19. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
    [CrossRef]
  20. D. Tabor, “Surface forces and surface interactions,” J. Colloidal Interface Sci. 58, 2-13 (1977).
    [CrossRef]
  21. G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
    [CrossRef]
  22. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
    [CrossRef]
  23. Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).
  24. J. Visser, “Particle adhesion and removal: a review,” Part. Sci. Technol. 13, 169-196 (1995).
    [CrossRef]
  25. F. Zhang and A. A. Busnaina, “Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning,” Appl. Phys. A 69, 437-440 (1999).
    [CrossRef]
  26. A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
    [CrossRef]
  27. E. L. Cusser, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, 1984).
  28. K. Elliott, “Development of a versatile scanning system for multiprobe biomedical measurements,” Ph.D. dissertation (University of North Carolina at Charlotte, 2008).
  29. M. Minsky, “Microscopy apparatus,” U.S. patent 3013467(19 December 1961).
  30. D. Semwogerere and E. R. Weeks, “Confocal microscopy,” in Encyclopedia of Biomaterials and Biomedical Engineering (Taylor & Francis, 2005), pp. 1-10.
  31. “Soda lime glass 0215 Corning glass slides,” (Ted Pella Inc.), www.tedpella.com/technote_html/0215%corning%20glass.pdf.
  32. M. Hines, Evident Technologies, Troy, New York (personal communication, 2008).
  33. L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125-169 (1997).
    [CrossRef]
  34. Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
    [CrossRef] [PubMed]
  35. “Zinc sulfide specifications,” (ISP Optics), www.ispoptics.com/OpticalMaterialsSpecs.htm.

2005 (2)

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

2003 (1)

Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).

2002 (1)

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

2001 (2)

M. Wautelet, “Scaling laws in the macro-, micro- and nanoworlds,” Eur. J. Phys. 22, 601-611 (2001).
[CrossRef]

G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
[CrossRef]

1999 (2)

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

F. Zhang and A. A. Busnaina, “Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning,” Appl. Phys. A 69, 437-440 (1999).
[CrossRef]

1998 (2)

D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

1997 (1)

L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125-169 (1997).
[CrossRef]

1995 (3)

J. Visser, “Particle adhesion and removal: a review,” Part. Sci. Technol. 13, 169-196 (1995).
[CrossRef]

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152-171 (1990).
[CrossRef]

1989 (1)

E. Brinksmeier, “State of the art of nondestructive measurement of subsurface material properties and damages,” Precis. Eng. 11, 211-224 (1989).
[CrossRef]

1977 (1)

D. Tabor, “Surface forces and surface interactions,” J. Colloidal Interface Sci. 58, 2-13 (1977).
[CrossRef]

1975 (2)

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
[CrossRef]

B. R. Lawn and T. R. Wilshaw, “Review indentation fracture: principles and applications,” J. Mater. Sci. Technol. (Sofia) 10, 1049-1081 (1975).

1971 (1)

K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
[CrossRef]

1937 (1)

F. P. Bowden and T. P. Hughes, “Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer,” Proc. R. Soc. London Ser. A 160, 575-587(1937).
[CrossRef]

1927 (1)

N. K. Adam, “The polishing of surfaces,” Nature 119, 162-163(1927).
[CrossRef]

1921 (1)

A. A. Griffith, “The phenomona of rupture and flow in solids,” Phil. Trans. R. Soc. London Ser. A 221, 163-198 (1921).
[CrossRef]

Adam, N. K.

N. K. Adam, “The polishing of surfaces,” Nature 119, 162-163(1927).
[CrossRef]

Bawendi, M. G.

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

Beaudoin, S. P.

G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
[CrossRef]

Bergstrom, L.

L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125-169 (1997).
[CrossRef]

Berman, N. S.

G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
[CrossRef]

Bowden, F. P.

F. P. Bowden and T. P. Hughes, “Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer,” Proc. R. Soc. London Ser. A 160, 575-587(1937).
[CrossRef]

Bowling, R. A.

R. A. Bowling, “A theoretical review of particle adhesion," in Particle on Surface. I. Detection, Adhesion, and Removal, K. L. Mittal, ed. (Plenum, 1988), pp. 129-142.

Brinksmeier, E.

D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
[CrossRef]

E. Brinksmeier, “State of the art of nondestructive measurement of subsurface material properties and damages,” Precis. Eng. 11, 211-224 (1989).
[CrossRef]

Burdick, G. M.

G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
[CrossRef]

Busnaina, A. A.

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

F. Zhang and A. A. Busnaina, “Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning,” Appl. Phys. A 69, 437-440 (1999).
[CrossRef]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152-171 (1990).
[CrossRef]

Cusser, E. L.

E. L. Cusser, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, 1984).

Dabbousi, B. O.

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

Daemen, L. L.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Davis, J. B.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” paper presented at the ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, Arizona, 25-27 April 1989.

Derjaguin, B. V.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
[CrossRef]

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Down, R. T.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Edwards, D. F.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” paper presented at the ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, Arizona, 25-27 April 1989.

Elliott, K.

K. Elliott, “Development of a versatile scanning system for multiprobe biomedical measurements,” Ph.D. dissertation (University of North Carolina at Charlotte, 2008).

Fan, Z.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Feltz, A.

A. Lindquist, S. D. Jacobs, and A. Feltz, “Surface preparations for rapid measurement of subsurface damage depth,” presented at the OSA Science of Optical Finishing Topical Meeting, Monterey, California (1990).

Feng, J.-W.

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

Fukenbusch, P.

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Goch, G.

D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
[CrossRef]

Griffith, A. A.

A. A. Griffith, “The phenomona of rupture and flow in solids,” Phil. Trans. R. Soc. London Ser. A 221, 163-198 (1921).
[CrossRef]

He, H.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Hed, P. P.

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” paper presented at the ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, Arizona, 25-27 April 1989.

Hemley, R. J.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Hines, M.

M. Hines, Evident Technologies, Troy, New York (personal communication, 2008).

Hughes, T. P.

F. P. Bowden and T. P. Hughes, “Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer,” Proc. R. Soc. London Ser. A 160, 575-587(1937).
[CrossRef]

Jacobs, S. D.

A. Lindquist, S. D. Jacobs, and A. Feltz, “Surface preparations for rapid measurement of subsurface damage depth,” presented at the OSA Science of Optical Finishing Topical Meeting, Monterey, California (1990).

Johnson, K. L.

K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
[CrossRef]

Kendall, K.

K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
[CrossRef]

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Lambropoulos, J. C.

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Lawn, B. R.

B. R. Lawn and T. R. Wilshaw, “Review indentation fracture: principles and applications,” J. Mater. Sci. Technol. (Sofia) 10, 1049-1081 (1975).

Li, W. J.

Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).

Li, Y.

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Lin, H.

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

Lindquist, A.

A. Lindquist, S. D. Jacobs, and A. Feltz, “Surface preparations for rapid measurement of subsurface damage depth,” presented at the OSA Science of Optical Finishing Topical Meeting, Monterey, California (1990).

Liu, S.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Lucca, D. A.

D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
[CrossRef]

Minsky, M.

M. Minsky, “Microscopy apparatus,” U.S. patent 3013467(19 December 1961).

Moumen, N.

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

Muller, V. M.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
[CrossRef]

Nichols, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Onitsuka, O.

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Roberts, A. D.

K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
[CrossRef]

Rubner, M. F.

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

Ruckman, J.

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Semwogerere, D.

D. Semwogerere and E. R. Weeks, “Confocal microscopy,” in Encyclopedia of Biomaterials and Biomedical Engineering (Taylor & Francis, 2005), pp. 1-10.

Shao, J.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Shen, J.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Shi, X.

Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).

Tabor, D.

D. Tabor, “Surface forces and surface interactions,” J. Colloidal Interface Sci. 58, 2-13 (1977).
[CrossRef]

Taylor, J.

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

Toporov, Y. P.

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
[CrossRef]

Visser, J.

J. Visser, “Particle adhesion and removal: a review,” Part. Sci. Technol. 13, 169-196 (1995).
[CrossRef]

Wang, X.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Wang, Z. L.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Wautelet, M.

M. Wautelet, “Scaling laws in the macro-, micro- and nanoworlds,” Eur. J. Phys. 22, 601-611 (2001).
[CrossRef]

Weeks, E. R.

D. Semwogerere and E. R. Weeks, “Confocal microscopy,” in Encyclopedia of Biomaterials and Biomedical Engineering (Taylor & Francis, 2005), pp. 1-10.

Wilshaw, T. R.

B. R. Lawn and T. R. Wilshaw, “Review indentation fracture: principles and applications,” J. Mater. Sci. Technol. (Sofia) 10, 1049-1081 (1975).

YI, K.

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Zha, C. S.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang and A. A. Busnaina, “Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning,” Appl. Phys. A 69, 437-440 (1999).
[CrossRef]

Zhao, Y.

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Zhao, Y.-P.

Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).

Adv. Colloid Interface Sci. (1)

L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125-169 (1997).
[CrossRef]

Appl. Phys. A (1)

F. Zhang and A. A. Busnaina, “Submicron particle removal in post-oxide chemical-mechanical planarization (CMP) cleaning,” Appl. Phys. A 69, 437-440 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Appl. Phys. Lett. 66, 1316-1318 (1995).
[CrossRef]

CIRP Ann. Manuf. Technol. (1)

D. A. Lucca, E. Brinksmeier, and G. Goch, “Progress in assessing surface and subsurface integrity,” CIRP Ann. Manuf. Technol. 47, 669-693 (1998).
[CrossRef]

Eur. J. Phys. (1)

M. Wautelet, “Scaling laws in the macro-, micro- and nanoworlds,” Eur. J. Phys. 22, 601-611 (2001).
[CrossRef]

IEEE Trans. Semicond. Manuf. (1)

A. A. Busnaina, H. Lin, N. Moumen, J.-W. Feng, and J. Taylor, “Particle adhesion and removal mechanisms in post-CMP cleaning processes,” IEEE Trans. Semicond. Manuf. 15, 374-382 (2002).
[CrossRef]

J. Colloid Interface Sci. (1)

B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, “Effect of contact deformations on the adhesion of particles,” J. Colloid Interface Sci. 53, 314 (1975).
[CrossRef]

J. Colloidal Interface Sci. (1)

D. Tabor, “Surface forces and surface interactions,” J. Colloidal Interface Sci. 58, 2-13 (1977).
[CrossRef]

J. Mater. Sci. Technol. (Sofia) (1)

B. R. Lawn and T. R. Wilshaw, “Review indentation fracture: principles and applications,” J. Mater. Sci. Technol. (Sofia) 10, 1049-1081 (1975).

J. Nanopart. Res. (1)

G. M. Burdick, N. S. Berman, and S. P. Beaudoin, “Describing hydrodynamic particle removal from surfaces using the particle Reynolds number,” J. Nanopart. Res. 3, 453-465 (2001).
[CrossRef]

J. Non-Cryst. Solids (1)

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152-171 (1990).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

B. O. Dabbousi, O. Onitsuka, M. F. Rubner, and M. G. Bawendi, “Size dependent electroluminescence from CdSe nanocrystallites (quantum dots),” Mater. Res. Soc. Symp. Proc. 358, 707-712 (1995).
[CrossRef]

Nat. Mater. (1)

Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Down, X. Wang, Z. L. Wang, and R. J. Hemley, “Morphology-tuned wurtzite-type ZnS nanobelts,” Nat. Mater. 4, 922-927 (2005).
[CrossRef] [PubMed]

Nature (1)

N. K. Adam, “The polishing of surfaces,” Nature 119, 162-163(1927).
[CrossRef]

Optik (Jena) (1)

J. Shen, S. Liu, K. YI, H. He, J. Shao, and Z. Fan, “Subsurface damage in optical substrates,” Optik (Jena) 116, 288-294(2005).
[CrossRef]

Part. Sci. Technol. (1)

J. Visser, “Particle adhesion and removal: a review,” Part. Sci. Technol. 13, 169-196 (1995).
[CrossRef]

Phil. Trans. R. Soc. London Ser. A (1)

A. A. Griffith, “The phenomona of rupture and flow in solids,” Phil. Trans. R. Soc. London Ser. A 221, 163-198 (1921).
[CrossRef]

Precis. Eng. (1)

E. Brinksmeier, “State of the art of nondestructive measurement of subsurface material properties and damages,” Precis. Eng. 11, 211-224 (1989).
[CrossRef]

Proc. R. Soc. London Ser. A (2)

F. P. Bowden and T. P. Hughes, “Physical properties of surfaces. IV. Polishing, surface flow and the formation of the Beilby layer,” Proc. R. Soc. London Ser. A 160, 575-587(1937).
[CrossRef]

K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London Ser. A 324, 301-311 (1971).
[CrossRef]

Proc. SPIE (2)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polish compound affects the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-364 (1998).
[CrossRef]

J. C. Lambropoulos, Y. Li, P. Fukenbusch, and J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

Y.-P. Zhao, X. Shi, and W. J. Li, “Effect of work of adhesion on nanoindentation,” Rev. Adv. Mater. Sci. 5, 348-353 (2003).

Other (12)

“Zinc sulfide specifications,” (ISP Optics), www.ispoptics.com/OpticalMaterialsSpecs.htm.

E. L. Cusser, Diffusion: Mass Transfer in Fluid Systems (Cambridge University, 1984).

K. Elliott, “Development of a versatile scanning system for multiprobe biomedical measurements,” Ph.D. dissertation (University of North Carolina at Charlotte, 2008).

M. Minsky, “Microscopy apparatus,” U.S. patent 3013467(19 December 1961).

D. Semwogerere and E. R. Weeks, “Confocal microscopy,” in Encyclopedia of Biomaterials and Biomedical Engineering (Taylor & Francis, 2005), pp. 1-10.

“Soda lime glass 0215 Corning glass slides,” (Ted Pella Inc.), www.tedpella.com/technote_html/0215%corning%20glass.pdf.

M. Hines, Evident Technologies, Troy, New York (personal communication, 2008).

P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removal,” paper presented at the ASPE Spring Conference on Sub-Surface Damage in Glass, Tucson, Arizona, 25-27 April 1989.

A. Lindquist, S. D. Jacobs, and A. Feltz, “Surface preparations for rapid measurement of subsurface damage depth,” presented at the OSA Science of Optical Finishing Topical Meeting, Monterey, California (1990).

“Quantum dots features,” (Evident Technologies, 2008), http://www.evidenttech.com/quantum-dots-explained/quantum-dot-features.html, retrieved 14 April 2008.

“Nanomaterials catalog,” (Evident Technologies, 2005), Vol. 7.

R. A. Bowling, “A theoretical review of particle adhesion," in Particle on Surface. I. Detection, Adhesion, and Removal, K. L. Mittal, ed. (Plenum, 1988), pp. 129-142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of hypothesized interaction of quantum dots with fractures generated by lapping and polishing dynamics.

Fig. 2
Fig. 2

Maximum and mean relative fluorescence detected on and beneath the surface of a quantum dot contaminated (not cleaned) glass sample, with error bars denoting the standard deviation.

Fig. 3
Fig. 3

Optical images of the sample surface after (a) lapping and polishing and (b) with 1 μm etched away to reveal SSD.

Fig. 4
Fig. 4

(a) White light interferometer, (b) confocal fluorescence, (c) wide field fluorescence, and (d) atomic force microscopy images of the sample surface after lapping and polishing with tagged slurries.

Fig. 5
Fig. 5

Maximum and mean fluorescence values for glass samples lapped and polished with quantum dots, then pitch polished at various focal planes, with error bars denoting the standard deviation.

Fig. 6
Fig. 6

Confocal fluorescence image of a glass sample (a) lapped and polished with quantum dots, then (b) pitch polished at a focal plane coincident with the surface (contrast enhanced for printing).

Tables (2)

Tables Icon

Table 1 Values of Parameters Used in Eqs. (2) to (9) and Their Sources

Tables Icon

Table 2 Normalized Fluorescent Response of Glass Samples Exposed to Quantum Dots Under Varied Conditions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F VDW = A D 12 r 2 ( N ) ,
a 0 = ( π Δ γ D 2 2 K ) 1 3 ( m ) ,
K = 4 3 ( 1 ν 1 2 E 1 + 1 ν 2 2 E 2 ) ( Pa ) .
F VDW = A D 12 r 2 ( 1 + 2 a 0 2 ε D ) ( N ) .
F D = C D ρ v 2 2 A ( N ) ,
Re = ρ v D μ ,
C D = 24 Re ,
v max = ω R ( m / s ) .
v = v max D D abrasive ( m / s ) .

Metrics