Abstract

The influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar (HSRL) is experimentally investigated and theoretically evaluated. The measurements analyzed in this study were made during three field campaigns by the German Aerospace Center airborne HSRL. The influence of the respective theoretical model on spaceborne HSRL retrievals is also estimated. Generally, the influence on aerosol extinction coefficient can be neglected for both airborne and spaceborne HSRLs. However, the influence on aerosol backscatter coefficient depends on aerosol concentration and is larger than 3% (6%) at ground level for airborne (spaceborne) HSRLs, which is considerable for the spaceborne HSRL, especially when the aerosol concentration is low. A comparison of the HSRL measurements and coordinated ground-based sunphotometer measurements shows that the influence of the model is observable and comparable to the measurement error of the lidar system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
    [CrossRef]
  2. J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
    [CrossRef]
  3. B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
    [CrossRef]
  4. D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
    [CrossRef]
  5. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
    [CrossRef]
  6. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
    [CrossRef]
  7. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984).
    [CrossRef]
  8. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
    [CrossRef]
  9. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373-1381 (1983).
    [CrossRef]
  10. R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
    [CrossRef]
  11. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234-236 (1994).
    [CrossRef]
  12. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
    [CrossRef]
  13. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
    [CrossRef]
  14. J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.
  15. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
    [CrossRef]
  16. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
    [CrossRef]
  17. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
    [CrossRef]
  18. M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
    [CrossRef]
  19. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
    [CrossRef]
  20. M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.
  21. European Space Agency, “ADM-Aeolus, science report,” ESA SP-1311 (European Space Research and Technology Centre, 2008).
  22. European Space Agency, “Atmospheric dynamics mission, report for mission selection,” ESA SP-1233(4) (European Space Research and Technology Centre, 1999).
  23. A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
    [CrossRef]
  24. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007).
    [CrossRef]
  25. P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
    [CrossRef]
  26. European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).
  27. Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
    [CrossRef]
  28. A. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535(1981).
    [CrossRef]
  29. A. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
    [CrossRef]
  30. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001).
    [CrossRef]
  31. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
    [CrossRef]
  32. X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
    [CrossRef]
  33. Q. Zheng, “Model for polarized and depolarized Rayleigh-Brillouin scattering spectra in molecular gases,” Opt. Express 15, 14257-14265 (2007).
    [CrossRef]
  34. A. Young and G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668-3670 (1983).
    [CrossRef]
  35. L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).
  36. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).
  37. M. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA (personal communication, 2009).
  38. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).
  39. T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.
  40. European Space Agency, “WALES--Water Vapour Lidar Experiment in Space,” ESA SP-1279(3) (European Space Research and Technology Centre, 2004).
  41. S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode (CNRS, 1978).
  42. R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001).
    [CrossRef]
  43. A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964).
    [CrossRef]
  44. S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

2009 (2)

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

2008 (3)

2007 (4)

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007).
[CrossRef]

Q. Zheng, “Model for polarized and depolarized Rayleigh-Brillouin scattering spectra in molecular gases,” Opt. Express 15, 14257-14265 (2007).
[CrossRef]

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

2005 (3)

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

2004 (2)

D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
[CrossRef]

X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

2003 (1)

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

2002 (1)

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

2001 (3)

1999 (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

1994 (1)

1990 (1)

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

1984 (1)

1983 (3)

1982 (1)

A. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
[CrossRef]

1981 (2)

1974 (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
[CrossRef]

1964 (1)

A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

1934 (1)

L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).

Althausen, D.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Alvarez, R. J.

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

Andersson, E.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Ansmann, A.

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007).
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Bézy, J.-L.

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

Böckmann, C.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Boley, C.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
[CrossRef]

Bösenberg, J.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Caldwell, L. M.

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

Cook, A. L.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

Cuesta, J.

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

Culoma, A.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Dabas, A.

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

Demuth, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Denneulin, M.-L.

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

Desai, R.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
[CrossRef]

DiMarzio, J. P.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

Dubock, P.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Durand, Y.

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

Ehret, G.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

Eloranta, E. W.

Endemann, M.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Esselborn, M.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

Fernald, F. G.

Ferrare, R. A.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

Fiebig, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Fix, A.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

Flamant, P.

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Forkey, J.

R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Forkey, J. N.

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode (CNRS, 1978).

Golay, M.

A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Hair, J. W.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

Hancock, D.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

Harper, D. B.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

Hart, W.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Hart, W. D.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

Hélière, A.

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

Hlavka, D.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Hlavka, D. L.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

Hostetler, C. A.

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
[CrossRef]

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

Hovis, F. E.

Huber, D.

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

Hunt, W. H.

D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
[CrossRef]

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Izquierdo, L. R.

Källén, E.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Kattawar, G.

Klett, J. D.

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

Krueger, D. A.

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

Lajas, D.

Landau, L.

L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).

Le, O.

Lee, S. A.

Leibrandt, W.

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

Lempert, W.

R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Li, Y. H.

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

Liepert, B.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Luc, P.

S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode (CNRS, 1978).

Mack, T. L.

Mahesh, A.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

Martimort, P.

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Matthias, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

McCormick, M. P.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

Meynart, R.

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Miles, R.

X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Morançais, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Müller, D.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Pain, T.

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

Palm, S.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Palm, S. P.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

Pan, X.

X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Pelon, J. R.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

Petzold, A.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

Piironen, P.

Placzek, G.

L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).

Rasp, K.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

Roesler, F. L.

Romanou, A.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Rossow, W. B.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Ruedy, R. A.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Savitzky, A.

A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Schmidt, G. A.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

Schutz, B. E.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

She, C. Y.

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

Shimizu, H.

Shipley, S. T.

Shneider, M.

X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

M. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA (personal communication, 2009).

Shuman, C. A.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

Spinhirne, J.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Spinhirne, J. D.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

Sroga, J. T.

Stoffelen, A.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Stohl, A.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Straume, A. G.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Tanguy, P.

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

Tenti, G.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
[CrossRef]

Tesche, M.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

Tracy, D. H.

Trauger, J. T.

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Wandinger, U.

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007).
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Weinman, J. A.

Weinzierl, B.

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

Weiss, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Welch, W.

Welton, E.

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

Welton, E. J.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

Wendisch, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Wergen, W.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Wimmer, R.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

Winker, D. M.

D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
[CrossRef]

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

Wirth, M.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

Young, A.

Zhang, Y.

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

Zheng, Q.

Zwally, H. J.

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

Anal. Chem. (1)

A. Savitzky and M. Golay, “Smoothing and differentiation of data by simplified least square procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Appl. Opt. (11)

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
[CrossRef]

A. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535(1981).
[CrossRef]

H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373-1381 (1983).
[CrossRef]

A. Young and G. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668-3670 (1983).
[CrossRef]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
[CrossRef]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984).
[CrossRef]

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606-6622 (2007).
[CrossRef]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358(2008).
[CrossRef]

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734-6752(2008).
[CrossRef]

Appl. Phys. B. (1)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B. 96, 201-213 (2009).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurements,” Bull. Am. Meteorol. Soc. 86, 73-87 (2005).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
[CrossRef]

Geophys. Res. Lett. (3)

A. Romanou, B. Liepert, G. A. Schmidt, W. B. Rossow, R. A. Ruedy, and Y. Zhang, “20th century changes in surface solar irradiance in simulations and observations,” Geophys. Res. Lett. 34, L05713 (2007).
[CrossRef]

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, “Cloud and aerosol measurements from GLAS: Overview and initial results,” Geophys. Res. Lett. 32, L22S03 (2005).
[CrossRef]

B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J. P. DiMarzio, “Overview of the ICESat Mission,” Geophys. Res. Lett. 32, L21S01 (2005).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Ocean. Technol. 7, 876-881(1990).
[CrossRef]

J. Geophys. Res. (1)

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

R. Miles, W. Lempert, and J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33-R51 (2001).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

X. Pan, M. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Phys. Today (1)

A. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982).
[CrossRef]

Phys. Z. Sowiet. Un. (1)

L. Landau and G. Placzek, “Structure of the undisplaced scattering line,” Phys. Z. Sowiet. Un. 5, 172 (1934).

Proc. SPIE (3)

D. M. Winker, W. H. Hunt, and C. A. Hostetler, “Status and performance of the CALIOP lidar,” Proc. SPIE 5575, 8-15(2004).
[CrossRef]

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
[CrossRef]

Y. Durand, A. Hélière, J.-L. Bézy, and R. Meynart, “The ESA EarthCARE mission: results of the ATLID instrument pre-developments,” Proc. SPIE 6750, 675015 (2007).
[CrossRef]

Tellus A (1)

P. Flamant, J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus A 60, 273-288 (2008).
[CrossRef]

Tellus B (1)

M. Esselborn, M. Wirth, A. Fix, B. Weinzierl, K. Rasp, M. Tesche, and A. Petzold, “Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006,” Tellus B 61, 131-143(2009).
[CrossRef]

Other (12)

S. Palm, W. Hart, D. Hlavka, E. Welton, A. Mahesh, and J. Spinhirne, “GLAS atmospheric data products, algorithm theoretical basis document, version 4.2,” (Goddard Space Flight Center, 2002, last accessed 2 June 2009) http://www.csr.utexas.edu/glas/pdf/glasatmos.atbdv4.2.pdf.

European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).

J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley airborne high spectral resolution lidar for measurements of aerosols and clouds,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 411-414.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, “The ADM-AEOLUS mission--the first wind lidar in space,” in Proceedings of 22nd International Laser Radar Conference, ESA SP-561(2) (European Space Agency, 2004), pp. 953-956.

European Space Agency, “ADM-Aeolus, science report,” ESA SP-1311 (European Space Research and Technology Centre, 2008).

European Space Agency, “Atmospheric dynamics mission, report for mission selection,” ESA SP-1233(4) (European Space Research and Technology Centre, 1999).

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).

M. Shneider, Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA (personal communication, 2009).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0-120 km),” AFGL-TR-86-0110 (Air Force Geophysics Laboratory, 1986).

T. Pain, P. Martimort, P. Tanguy, W. Leibrandt, and A. Hélière, “ATLID: atmospheric lidar four clouds and aerolsol observations combined with radar sounding,” in Proceedings of the 5th International Conference on Space Optics, B. Warmbein ed., ESA SP-554 (European Space Agency, 2004), pp. 19-23.

European Space Agency, “WALES--Water Vapour Lidar Experiment in Space,” ESA SP-1279(3) (European Space Research and Technology Centre, 2004).

S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode (CNRS, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Measured iodine absorption line (thick solid curve) at 563.244 THz ( 532.26 nm ) together with the normalized molecular backscatter spectrum per gigahertz before (upper curves) and after (lower curves) filtering. The thin solid curves, the thick dashed curves, and the thin dashed curves are calculated with the S6 model, the S7 model, and the Gaussian model, respectively. (a) For standard air ( 1000 hPa , 0 ° C ), the attenuation factors of molecular backscatter are 0.395, 0.397, and 0.369 for the S6 model, the S7 model, ,and the Gaussian model, respectively. (b) At an altitude of 10 km ( 250 hPa , 50 ° C ), the attenuation factors of molecular backscatter are 0.332, 0.333, and 0.325 for the S6 model, the S7 model, and the Gaussian model, respectively.

Fig. 2
Fig. 2

Absolute error of the attenuation factors of molecular backscatter from applying the Gaussian model calculated based on the six reference atmospheres. The error bars show the maximum error range due to different atmospheres.

Fig. 3
Fig. 3

HSRL-measured profiles of the aerosol extinction coefficient (15:56, 25 January 2008, Praia) retrieved using the S6 model, the S7 model, and the Gaussian model.

Fig. 4
Fig. 4

Absolute errors of the aerosol extinction coefficient from applying the Gaussian model calculated using the averaged radiosonde profile (solid curve) and retrieved from the HSRL measurements (different symbols).

Fig. 5
Fig. 5

Absolute error of the aerosol extinction coefficient after Eq. (6) from applying (a) the Gaussian model and (b) the S7 model calculated based on the six reference atmospheres. The error bars show the maximum error range due to different models.

Fig. 6
Fig. 6

HSRL-measured profiles of the aerosol backscatter coefficient (15:56, 25 January 2008, Praia) retrieved using the S6 model, the S7 model, and the Gaussian model.

Fig. 7
Fig. 7

Relative errors of the aerosol backscatter coefficient after Eq. (8) from applying the Gaussian model retrieved from seven HSRL measurements classified by the backscatter ratio. The normalization height is 7 km for the HSRL retrieval. The solid curves are errors theoretically calculated using Eq. (8) from averaged radiosonde data during the HSRL measurements.

Fig. 8
Fig. 8

Relative errors of the aerosol backscatter coefficient after Eq. (8) caused by the Gaussian model calculated based on the U.S. standard atmosphere (curves) with given backscatter ratios ( R b ). The error bars show the error range due to the six different reference atmospheres. The normalization height is (a)  7 km and (b)  30 km for the calculation.

Fig. 9
Fig. 9

Relative errors of the aerosol backscatter coefficient after Eq. (8) caused by the S7 model calculated based on the U. S. standard atmosphere (curves) with given backscatter ratios ( R b ). The error bars show the error range due to the six different reference atmospheres. The normalization height is (a)  7 km and (b)  30 km for the calculation.

Fig. 10
Fig. 10

Comparison of the aerosol optical thickness measured by airborne HSRL and the sunphotometer at 18 aircraft overpasses during the SAMUM 2006, the SAMUM 2008, and the EUCAARI 2008 field campaigns. The HSRL measurements are retrieved using the S6 model and the Gaussian model. The error bars indicate the measurement error of the airborne HSRL. The solid curve and the dashed curve show the linear least-squares fit for the results from the S6 model and the Gaussian model, respectively.

Tables (2)

Tables Icon

Table 1 Flight Legs Used for the Analysis of the Model Influences on the Aerosol Extinction and Backscatter Coefficients

Tables Icon

Table 2 Flight Legs Used for the Comparison of the Aerosol Optical Thickness Measured with Airborne HSRL and Sunphotometer

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

f m ( T , p ) = F ( ν ) R ( ν , T , p ) l ( ν ν ) d ν d ν ,
E t ( r ) = η t E 0 A r 2 Δ r [ β m ( r ) + β a ( r ) ] τ 2 ( r ) ,
E m ( r ) = η m E 0 A r 2 Δ r [ β m ( r ) f m ( r ) + β a ( r ) f a ] τ 2 ( r ) ,
τ 2 ( r ) = τ m 2 ( r ) τ a 2 ( r ) = exp { 2 0 r [ α m ( r ) + α a ( r ) ] d r } ,
α a ( r ) = 1 2 d d r [ ln E m ( r ) r 2 β m ( r ) f m ( r ) ] α m ( r ) ,
R b ( r ) = η m η t E t ( r ) E m ( r ) f m ( r ) ,
β a ( r ) = [ η m η t E t ( r ) E m ( r ) f m ( r ) 1 ] β m ( r ) .
Δ x i , j = x i x j ,
δ x i , j = x i x j x j × 100 % ,
Δ α a , i , j ( r ) = 1 2 [ d f m , i ( r ) / d r f m , i ( r ) d f m , j ( r ) / d r f m , j ( r ) ] ,
δ R b , i , j ( r ) = δ f m , i , j ( r ) ,
δ β a , i , j ( r ) = [ β m ( r ) β a , j ( r ) + 1 ] δ f m , i , j ( r ) ,
δ f m , i , j ( r ) = f m , i ( r ) / f m , i ( r 0 ) f m , j ( r ) / f m , j ( r 0 ) f m , j ( r ) / f m , j ( r 0 ) , i , j = S 6 , S 7 , G ,
η m , i = η t E m ( r 0 ) E t ( r 0 ) R b ( r 0 ) f m , i ( r 0 ) , i , j = S 6 , S 7 , G ,
t a ( r ) = 1 2 [ ln E m ( r ) r 2 η m E 0 A Δ r β m ( r ) f m ( r ) τ m 2 ( r ) ] ,
Δ t a , i , j ( r ) = 1 2 [ ln f m , i ( r 0 ) f m , i ( r ) ln f m , j ( r 0 ) f m , j ( r ) ] = 1 2 ln [ f m , i , j ( r ) + 1 ] .
Δ α a , i , j ( r ) = 1 2 d d r [ ln f m , i ( r ) f m , j ( r ) ] = 1 2 [ d f m , i ( r ) / d r f m , i ( r ) d f m , j ( r ) / d r f m , j ( r ) ] .
δ R b , i , j ( r ) = η m , i f m , i ( r ) η m , j f m , j ( r ) η m , j f m , j ( r ) = δ f m , i , j ( r ) .
δ β a , i , j ( r ) = E t ( r ) E m ( r ) η m , i f m , i ( r ) η m , j f m , j ( r ) η t β a , j ( r ) / β m ( r ) = [ β m ( r ) β a , j ( r ) + 1 ] δ f m , i , j ( r ) .

Metrics