Abstract

Stressed liquid crystals are tested with two-wavelength sources and varying intensity inputs in order to further examine their functionality as phase modulating elements in Fourier transform spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
    [Crossref]
  2. L. Liu and N. G. Chen, “Double-pass rotary mirror array for fast scanning optical delay line,” Appl. Opt. 45, 5426-5431(2006).
    [Crossref] [PubMed]
  3. S. D. Collins, R. L. Smith, C. Gonzalez, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844-846 (1999).
    [Crossref]
  4. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705-1707 (1999).
    [Crossref]
  5. L. Genzel and J. Kuhl, “Tilt-compensated Michelson interferometer for Fourier transform spectroscopy,” Appl. Opt. 17, 3304-3308 (1978).
    [Crossref] [PubMed]
  6. P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Liquid-crystal imaging Fourier- spectrometer array,” Opt. Lett. 15, 652-654 (1990).
    [Crossref]
  7. B. H. Billings, “Visual Fourier-transform spectroscopy with single crystal plate moving parts,” J. Opt. Soc. Am. 65, 817-824 (1975).
    [Crossref] [PubMed]
  8. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, “Single-pulse Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035-6040 (1994).
    [Crossref] [PubMed]
  9. A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
    [Crossref]
  10. G. Boer, P. Ruffieux, T. Scharf, P. Seitz, and R. Dandliker, “Compact liquid-crystal-polymer Fourier-transform spectrometer,” Appl. Opt. 43, 43, 2201-2208 (2004).
    [Crossref] [PubMed]
  11. J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
    [Crossref]
  12. S.-W. Ke, T.-H. Lin, and A. Y. G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16, 2062-2067 (2008).
    [Crossref] [PubMed]
  13. J. McMurdy, L. Shelton, and G. Crawford, “Fourier transform spectroscopy using stressed liquid crystal,” Opt. Express 17, 4634-4639 (2009).
    [Crossref] [PubMed]

2009 (1)

2008 (1)

2006 (1)

2005 (2)

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

2004 (1)

1999 (2)

1994 (1)

1990 (1)

1978 (1)

1975 (1)

1973 (1)

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[Crossref]

Aoki, T.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

Bell, R. J.

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[Crossref]

Billings, B. H.

Boer, G.

Chen, N. G.

Collins, S. D.

Crawford, G.

Dandliker, R.

de Rooij, N. F.

Duncan, A. J.

Fuh, A. Y. G.

Genzel, L.

Glushchenko, A.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

Gonzalez, C.

Griffiths, P. R.

Hagopian, J. G.

Harvey, A. R.

Herzig, H. P.

Hirsche, B. L.

Ke, S.-W.

Kuhl, J.

Lin, T.-H.

Liu, L.

Manning, C. J.

Manzardo, O.

Marxer, C. R.

McMurdy, J.

Padgett, M. J.

Reznikov, Y.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

Ruffieux, P.

Scharf, T.

Seitz, P.

Shelton, L.

Sibbett, W.

Sirota, J. M.

Smith, R. L.

Stewart, K. P.

West, J. L.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

Zhang, G. Q.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

Zhang, K.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

Zhang, M.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

Am. J. Phys. (1)

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[Crossref]

Appl. Opt. (4)

Appl. Phy. Lett. (1)

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SLC (a) in an unsheared state where LC is in isotropic phase; (b) sheared so polymer fibers stretch along the substrate surface, orienting LCs in a planar alignment; and (c) with a voltage applied across the cells orienting LCs in a homeotropic alignment.

Fig. 2
Fig. 2

Power spectrum from a SLC with test signal from a single wavelength of 632.8 nm (a) and from a double-pass system with a test signal from a single wavelength of 532 nm (b).

Fig. 3
Fig. 3

Schematic and picture of an SLC in a double-pass system.

Fig. 4
Fig. 4

Broadband spectrum transmission intensity with increasing stress on the SLC cell. Each succeeding line is after an approximate 0.01% strain increase. The insets are two individual wavelengths picked out of the spectrum and graphed strained versus intensity.

Fig. 5
Fig. 5

(a) Interferogram from an SLC in a double-pass system with a two-wavelength signal, 532 nm and 632.8 nm . The data are fitted along the x axis, and the Fourier transform is calculated for the resulting power spectrum in (b).

Fig. 6
Fig. 6

Three power spectra from a two-wavelength system where the 632.8 nm wave is held at 5 mW and the 532 nm source is varied from (a)  5 mW , (b)  15 mW , and (c)  20 mW . The y axis is scaled from zero to one for relative intensity comparison.

Fig. 7
Fig. 7

Power spectrum from the two-wavelength test trial (a) without background scattering compensation and (b) with the removal of the scattering background.

Fig. 8
Fig. 8

Interferogram with an inset of the background scattering with the removal of the analyzer eliminating phase induced modulations.

Metrics