Abstract

Stressed liquid crystals are tested with two-wavelength sources and varying intensity inputs in order to further examine their functionality as phase modulating elements in Fourier transform spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
    [CrossRef]
  2. L. Liu and N. G. Chen, “Double-pass rotary mirror array for fast scanning optical delay line,” Appl. Opt. 45, 5426-5431(2006).
    [CrossRef] [PubMed]
  3. S. D. Collins, R. L. Smith, C. Gonzalez, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844-846 (1999).
    [CrossRef]
  4. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705-1707 (1999).
    [CrossRef]
  5. L. Genzel and J. Kuhl, “Tilt-compensated Michelson interferometer for Fourier transform spectroscopy,” Appl. Opt. 17, 3304-3308 (1978).
    [CrossRef] [PubMed]
  6. P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Liquid-crystal imaging Fourier- spectrometer array,” Opt. Lett. 15, 652-654 (1990).
    [CrossRef]
  7. B. H. Billings, “Visual Fourier-transform spectroscopy with single crystal plate moving parts,” J. Opt. Soc. Am. 65, 817-824 (1975).
    [CrossRef] [PubMed]
  8. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, “Single-pulse Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035-6040 (1994).
    [CrossRef] [PubMed]
  9. A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
    [CrossRef]
  10. G. Boer, P. Ruffieux, T. Scharf, P. Seitz, and R. Dandliker, “Compact liquid-crystal-polymer Fourier-transform spectrometer,” Appl. Opt. 43, 43, 2201-2208 (2004).
    [CrossRef] [PubMed]
  11. J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
    [CrossRef]
  12. S.-W. Ke, T.-H. Lin, and A. Y. G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16, 2062-2067 (2008).
    [CrossRef] [PubMed]
  13. J. McMurdy, L. Shelton, and G. Crawford, “Fourier transform spectroscopy using stressed liquid crystal,” Opt. Express 17, 4634-4639 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2006 (1)

2005 (2)

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

2004 (1)

1999 (2)

1994 (1)

1990 (1)

1978 (1)

1975 (1)

1973 (1)

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[CrossRef]

Aoki, T.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Bell, R. J.

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[CrossRef]

Billings, B. H.

Boer, G.

Chen, N. G.

Collins, S. D.

Crawford, G.

Dandliker, R.

de Rooij, N. F.

Duncan, A. J.

Fuh, A. Y. G.

Genzel, L.

Glushchenko, A.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Gonzalez, C.

Griffiths, P. R.

Hagopian, J. G.

Harvey, A. R.

Herzig, H. P.

Hirsche, B. L.

Ke, S.-W.

Kuhl, J.

Lin, T.-H.

Liu, L.

Manning, C. J.

Manzardo, O.

Marxer, C. R.

McMurdy, J.

Padgett, M. J.

Reznikov, Y.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

Ruffieux, P.

Scharf, T.

Seitz, P.

Shelton, L.

Sibbett, W.

Sirota, J. M.

Smith, R. L.

Stewart, K. P.

West, J. L.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Zhang, G. Q.

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

Zhang, K.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Zhang, M.

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Am. J. Phys. (1)

R. J. Bell, “Introductory fourier transform spectroscopy,” Am. J. Phys. 41, 149-152 (1973).
[CrossRef]

Appl. Opt. (4)

Appl. Phy. Lett. (1)

J. L. West, G. Q. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phy. Lett. 86, 031111 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

A. Glushchenko, K. Zhang, M. Zhang, T. Aoki, and J. L. West, “Stressed liquid crystal,” Proc. SPIE 5741, 64-73 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SLC (a) in an unsheared state where LC is in isotropic phase; (b) sheared so polymer fibers stretch along the substrate surface, orienting LCs in a planar alignment; and (c) with a voltage applied across the cells orienting LCs in a homeotropic alignment.

Fig. 2
Fig. 2

Power spectrum from a SLC with test signal from a single wavelength of 632.8 nm (a) and from a double-pass system with a test signal from a single wavelength of 532 nm (b).

Fig. 3
Fig. 3

Schematic and picture of an SLC in a double-pass system.

Fig. 4
Fig. 4

Broadband spectrum transmission intensity with increasing stress on the SLC cell. Each succeeding line is after an approximate 0.01% strain increase. The insets are two individual wavelengths picked out of the spectrum and graphed strained versus intensity.

Fig. 5
Fig. 5

(a) Interferogram from an SLC in a double-pass system with a two-wavelength signal, 532 nm and 632.8 nm . The data are fitted along the x axis, and the Fourier transform is calculated for the resulting power spectrum in (b).

Fig. 6
Fig. 6

Three power spectra from a two-wavelength system where the 632.8 nm wave is held at 5 mW and the 532 nm source is varied from (a)  5 mW , (b)  15 mW , and (c)  20 mW . The y axis is scaled from zero to one for relative intensity comparison.

Fig. 7
Fig. 7

Power spectrum from the two-wavelength test trial (a) without background scattering compensation and (b) with the removal of the scattering background.

Fig. 8
Fig. 8

Interferogram with an inset of the background scattering with the removal of the analyzer eliminating phase induced modulations.

Metrics