Abstract

An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism–PCL interface at 45° angle of incidence. A high extinction ratio in reflection (>50dB) over the 412μm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of ±6.6 and in the presence of grating filling factor errors of up to ±10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. I, Chap. 5.
  2. H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
    [CrossRef]
  3. J. Mouchart, J. Begel, and E. Duda, “Modified MacNeille cube polarizer for a wide angular field,” Appl. Opt. 28, 2847-2853 (1989).
    [CrossRef] [PubMed]
  4. L. Li and J. A. Dobrowolski, “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter,” Appl. Opt. 35, 2221-2225 (1996).
    [CrossRef] [PubMed]
  5. L. Li and J. A. Dobrowolski, “High-performance thin film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39, 2754-2771 (2000).
    [CrossRef]
  6. S. R. Perla and R. M. A. Azzam, “Wide-angle, high-extinction-ratio, infrared polarizing beam splitters using frustrated total internal reflection by an embedded centrosymmetric multilayer,” Appl. Opt. 46, 4604-4612 (2007).
    [CrossRef] [PubMed]
  7. H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
    [CrossRef]
  8. A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on form-birefringent multilayer grating,” Opt. Lett. 23, 1627-1629 (1998).
    [CrossRef]
  9. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
    [CrossRef] [PubMed]
  10. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
    [CrossRef]
  11. O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680-2692 (2008).
  12. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695-2706 (1994).
    [CrossRef] [PubMed]
  13. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.
  14. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987), Section 4.7.3.
  15. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]

2008

2007

2003

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

2000

1998

1996

1994

1993

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

1989

1982

Azzam, R. M. A.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987), Section 4.7.3.

Begel, J.

Bennett, J. M.

J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. I, Chap. 5.

Brundrett, D. L.

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Collischon, M.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Craighead, H. G.

Dobrowolski, J. A.

Duda, E.

Fan, S.

Feng, J.

Gaylord, T. K.

Glytsis, E. N.

Haidner, H.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Harris, T. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Hickman, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Hutfless, J.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Kilic, O.

Kipfer, P.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Lang, A.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Li, L.

Lindolf, J.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Lopez, A. G.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
[CrossRef]

McCormick, C. F.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Moharam, M. G.

Mouchart, J.

Perla, S. R.

Schwider, J.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Sheridan, J. T.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Solgaard, O.

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

Streibl, N.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Thomas, M. E.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Tropf, W. J.

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

Wang, B.

Zheng, J.

Zhou, C.

Appl. Opt.

J. Appl. Phys.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickman, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, and J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6 μm wavelength,” Opt. Eng. 32, 1860-1865 (1993).
[CrossRef]

Opt. Lett.

Other

W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995), Vol. II, Chap. 33.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987), Section 4.7.3.

J. M. Bennett, “Polarization,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), Vol. I, Chap. 5.

H. A. Macleod, Thin Film Optical Filters, 2nd ed. (McGraw-Hill, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Cross section of 1-D PCL of thickness d that consists of rectangular grating of a coating material of refractive index n c , period Λ, and filling factor f. The layer is deposited on an optically isotropic substrate (prism) of refractive index n. (b) Cube PBS using an embedded PCL with grating vector K G normal to the plane of incidence. p and s denote the linear polarizations parallel and perpendicular to the plane of incidence, respectively.

Fig. 2
Fig. 2

Intensity reflectance R p and extinction ratio ER r (dB) of prism–PCL interface are plotted as functions of grating filling factor f. These calculations are for ZnTe 1-D PCL embedded in ZnS prism, with grating period Λ = 1 μm , wavelength λ = 10.6 μm , and 45 ° angle of incidence.

Fig. 3
Fig. 3

Deviation from index matching of p- polarized light (i.e., n o = n ) as the wavelength λ is varied over the IR spectral range 4 λ 12 μm . These calculations assume ZnTe 1-D PCL embedded in ZnS prism with grating period Λ = 1 μm , and they take into account dispersion of the optical properties of ZnTe and ZnS.

Fig. 4
Fig. 4

Intensity reflectance R p and extinction ratio ER r plotted versus wavelength λ, 4 λ 12 μm , for a PBS that uses ZnTe 1-D PCL embedded in ZnS prism with grating period Λ = 1 λm and filling factor f = 0.604 . Dispersion of prism and coating materials is accounted for.

Fig. 5
Fig. 5

Intensity reflectance R p and extinction ratio ER r of ZnTe 1-D PCL of thickness d = 10 μm embedded in ZnS cube plotted as functions of f for λ = 10.6 μm , Λ = 1 μm , and ϕ = 45 ° . Interference effects in the PCL are accounted for.

Fig. 6
Fig. 6

Reflectances R p and R s of ZnTe 1-D PCL of thickness d = 10 μm , f = 0.604 , embedded in ZnS cube, for incident p- and s-polarized light, plotted versus wavelength λ, for 4 λ 12 μm . R p exhibits interference oscillations, whereas R s decreases monotonically as λ increases.

Fig. 7
Fig. 7

Extinction ratio in reflection ER r of ZnTe 1-D PCL of thickness d = 10 μm , f = 0.604 , embedded in ZnS cube, shown as a function of wavelength λ. ER r has Fabry-Perot-type multiple peaks at wavelengths at which destructive interference for the p polarization occurs.

Fig. 8
Fig. 8

Extinction ratio in transmission ER t , Eq. (9), plotted as a function of wavelength λ under the same conditions described in Fig. 7.

Fig. 9
Fig. 9

Extinction ratio in transmission ER t (dB), Eq. (9), plotted as a function of thickness d ( μm ) for ZnTe 1-D PCL embedded in ZnS prism with f = 0.604 and at wavelength λ = 10.6 μm .

Tables (2)

Tables Icon

Table 1 Design Parameters for PBS Using ZnTe PCL with Λ = 1 μm Embedded in ZnS Cube at 10.6 μm Wavelength

Tables Icon

Table 2 Design Parameters for PBS Using Ge PCL with Λ = 1 μm Embedded in Si Cube at 10.6 μm Wavelength

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n o ( 2 ) = { ( n o ( 1 ) ) 2 + 1 3 [ π Λ λ f ( 1 f ) ] 2 ( n c 2 1 ) 2 } 1 / 2 ,
n e ( 2 ) = { ( n e ( 1 ) ) 2 + 1 3 [ π Λ λ f ( 1 f ) ] 2 ( 1 n c 2 1 ) 2 ( n e ( 1 ) ) 6 ( n o ( 1 ) ) 2 } 1 / 2 ,
n o ( 1 ) = ( 1 f + n c 2 f ) 1 / 2 , n e ( 1 ) = ( 1 f + f / n c 2 ) 1 / 2 ,
n o = n .
ϕ c s = sin 1 x , x = n e / n < 1 / 2 .
n e = x n o .
x 2 { ( 1 f + n c 2 f ) + 1 3 ( π Λ λ 0 f ( 1 f ) ) 2 ( n c 2 1 ) 2 } = ( 1 f + f / n c 2 ) 1 + 1 3 ( π Λ λ 0 f ( 1 f ) ) 2 ( 1 n c 2 1 ) 2 ( 1 f + f / n c 2 ) 3 ( 1 f + n c 2 f ) .
ER r = 10 log 10 ( R s / R p ) .
ER t = 10 log 10 ( T p / T s ) = 10 log 10 ( 1 R p ) / ( 1 R s ) .

Metrics