Abstract

We report highly efficient diffractive beam splitters intended for high-power laser applications. Submicron relief structures that work as an antireflective layer are formed on the surfaces of a splitter to improve its transmitted efficiency. Surface structuring is performed using deep-UV interference lithography and reactive ion etching. As immersed in an index-matching liquid, the resist layer coated on diffractive surfaces is exposed to the interference fringes that are set intersecting the grooves on the surfaces. Rigorously designed structures with a period of 140nm and a depth of 55nm are lithographed onto fused-silica splitters. Splitting efficiencies at 266nm are increased by 8% to compare favorably with a theoretical value, while Fresnel reflections are considerably reduced.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription