Abstract

We report highly efficient diffractive beam splitters intended for high-power laser applications. Submicron relief structures that work as an antireflective layer are formed on the surfaces of a splitter to improve its transmitted efficiency. Surface structuring is performed using deep-UV interference lithography and reactive ion etching. As immersed in an index-matching liquid, the resist layer coated on diffractive surfaces is exposed to the interference fringes that are set intersecting the grooves on the surfaces. Rigorously designed structures with a period of 140nm and a depth of 55nm are lithographed onto fused-silica splitters. Splitting efficiencies at 266nm are increased by 8% to compare favorably with a theoretical value, while Fresnel reflections are considerably reduced.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications, 1st ed. (Akademie Verlag, 1997).
  2. J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
    [CrossRef]
  3. J. Amako, K. Nagasaka, and K. Nishida, “Chromatic distortion compensation in splitting and focusing of femtosecond pulses using a pair of diffractive optical elements,” Opt. Lett. 27, 969-971 (2002).
    [CrossRef]
  4. J. Amako, D. Sawaki, and E. Fujii, “Microstructuring transparent materials using nondiffracting ultrashort pulse beams generated by diffractive optics,” J. Opt. Soc. Am. B 20, 2562-2568 (2003).
    [CrossRef]
  5. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220-3228 (1983).
    [CrossRef] [PubMed]
  6. A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
    [CrossRef]
  7. A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
    [CrossRef]
  8. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562-4567(1986).
    [CrossRef] [PubMed]
  9. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1389 (1982).
    [CrossRef]
  10. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
    [CrossRef]
  11. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, and S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320-3336(1992).
    [CrossRef] [PubMed]
  12. J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
    [CrossRef]
  13. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806-809 (1978).
    [CrossRef]
  14. Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
    [CrossRef]
  15. D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F(2007).
    [CrossRef]
  16. D. Prongue, H. P. Herzig, R. Dandliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706-5711 (1992).
    [CrossRef] [PubMed]
  17. J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 14.4.2.
  19. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988), Chap. 3.
  20. http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)

2007 (2)

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F(2007).
[CrossRef]

2006 (2)

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

2004 (2)

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
[CrossRef]

1999 (1)

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

1992 (2)

1986 (1)

1983 (1)

1982 (1)

1978 (1)

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806-809 (1978).
[CrossRef]

Amako, J.

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F(2007).
[CrossRef]

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
[CrossRef]

J. Amako, D. Sawaki, and E. Fujii, “Microstructuring transparent materials using nondiffracting ultrashort pulse beams generated by diffractive optics,” J. Opt. Soc. Am. B 20, 2562-2568 (2003).
[CrossRef]

J. Amako, K. Nagasaka, and K. Nishida, “Chromatic distortion compensation in splitting and focusing of femtosecond pulses using a pair of diffractive optical elements,” Opt. Lett. 27, 969-971 (2002).
[CrossRef]

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
[CrossRef]

Baird, W. E.

Blasi, B.

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 14.4.2.

Buhler, C.

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

Case, S. K.

Dandliker, R.

Disch, A.

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

Enger, R. C.

Fujii, E.

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

J. Amako, D. Sawaki, and E. Fujii, “Microstructuring transparent materials using nondiffracting ultrashort pulse beams generated by diffractive optics,” J. Opt. Soc. Am. B 20, 2562-2568 (2003).
[CrossRef]

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
[CrossRef]

Furukawa, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Gale, M. T.

Gaylord, T. K.

Gombert, A.

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988), Chap. 3.

Herzig, H. P.

Hieda, K.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Hinsberg, W. D.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Hoffnagle, J. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Houle, F. A.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Ichikawa, H.

Ito, K.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Jaakkola, T.

Kuisma, S.

Magnusson, R.

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806-809 (1978).
[CrossRef]

Mick, J.

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

Miller, J. M.

Miyamatsu, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Moharam, M. G.

Muller, C.

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

Nagasaka, K.

J. Amako, K. Nagasaka, and K. Nishida, “Chromatic distortion compensation in splitting and focusing of femtosecond pulses using a pair of diffractive optical elements,” Opt. Lett. 27, 969-971 (2002).
[CrossRef]

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
[CrossRef]

Nishida, K.

Nitz, P.

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

Noponen, E.

Prongue, D.

Sanchez, M.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Sawaki, D.

Shimoda, T.

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
[CrossRef]

Shimokawa, T.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Taghizadeh, M. R.

Turunen, J.

Umetsu, K.

J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
[CrossRef]

Vasara, A.

Wang, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Westerholm, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 14.4.2.

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications, 1st ed. (Akademie Verlag, 1997).

Yada, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Yamaguchi, Y.

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

Yamazaki, Y.

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase grating with arbitrary grating shape,” J. Opt. Soc. Am. A 68, 806-809 (1978).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306-3309 (1999).
[CrossRef]

Microsyst. Technol. (1)

A. Disch, J. Mick, B. Blasi, and C. Muller, “Nanostructures on microstructured surfaces,” Microsyst. Technol. 13, 483-486(2007).
[CrossRef]

Opt. Eng. (1)

A. Gombert, B. Blasi, C. Buhler, and P. Nitz, “Some applications cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng. 43, 2525-2533 (2004).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (5)

J. Amako, T. Shimoda, and K. Umetsu, “Versatile light-control schemes based on diffractive optics for laser drilling, cutting, and joining technologies for microelectronic and micromechanical components and devices,” Proc. SPIE 5339, 475-487 (2004).
[CrossRef]

Y. Yada, K. Ito, Y. Yamaguchi, T. Furukawa, T. Miyamatsu, Y. Wang, T. Shimokawa, and K. Hieda, “Application of high-refractive index fluid to KrF-immersion, lithography,” Proc. SPIE 6153, 61531W (2006).
[CrossRef]

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F(2007).
[CrossRef]

J. Amako, K. Nagasaka, and E. Fujii, “Direct laser-writing of diffractive array illuminators operable at two wavelengths,” Proc. SPIE 4416, 360-363 (2001).
[CrossRef]

J. Amako, E. Fujii, Y. Yamazaki, and T. Shimoda, “Use of non-digitized diffractive optical elements for high-throughput and damage-free laser materials processing,” Proc. SPIE 6107, 61070D (2006).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sect. 14.4.2.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1988), Chap. 3.

http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications, 1st ed. (Akademie Verlag, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of an AR thin-film-coated binary DOE.

Fig. 2
Fig. 2

Layout examples of SWSs formed on diffractive surfaces. Crossing angles between SWS and DOE are (a) 0°, (b) 45°, and (c) 90°.

Fig. 3
Fig. 3

Reflectance versus SWS depth (numerical analysis): (a) TE polarization and (b) TM polarization. FF denotes the filling factor of SWS.

Fig. 4
Fig. 4

Surface topography of a diffractive beam splitter of fused silica, on which SWSs are to be produced.

Fig. 5
Fig. 5

Resist patterns formed on the diffractive surface of the splitter in Fig. 4: (a) without liquid immersion and (b) with liquid immersion.

Fig. 6
Fig. 6

Resist patterns built on the grooved surface with the crossing angles of (a) 0°, (b) 45°, and (c) 90°.

Fig. 7
Fig. 7

SWSs produced on the grooved surface with the crossing angles of (a) 0°, (b) 45°, and (c) 90°.

Fig. 8
Fig. 8

Intensity distributions of the arrayed beams: (a) before surface structuring and (b) after surface structuring.

Fig. 9
Fig. 9

SWSs formed on the binary diffractive surface in Fig. 4.

Fig. 10
Fig. 10

Resist patterns built on a binary beam splitter designed at 532 nm : (a) top view and (b) cross-sectional view.

Fig. 11
Fig. 11

Analog-type diffractive beam splitter: (a) relief profile in a period and (b) curvature of the profile.

Fig. 12
Fig. 12

Resist patterns built on the analog-type surface in Fig. 11: (a) convex region with a large curvature and (b) concave region with a small curvature.

Tables (1)

Tables Icon

Table 1 Measured Efficiencies of the Surface-Structured Beam Splitters a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = ( π d / λ ) n 3 ( 1 1 / n 0 2 ) [ Δ FF ( bottom ) Δ FF ( top ) ] .
h / p n 0 / 2 ( n 0 1 ) .
Δ ϕ = 2 π ( n 1 ) d / λ ,
1 / n 2 = FF / n 0 2 + ( 1 FF ) .
Δ ϕ = ( π d / λ ) n 3 ( 1 1 / n 0 2 ) Δ FF .
Δ ϕ = ( π d / λ ) n 3 ( 1 1 / n 0 2 ) [ Δ FF ( bottom ) Δ FF ( top ) ] .
I 0 ( ϕ ) = cos 2 ( ϕ / 2 ) + I 0 ( π ) sin 2 ( ϕ / 2 ) .
p < λ / n 0 .
H = λ / 2 ( n 0 1 ) .
h / p n 0 / 2 ( n 0 1 ) .
1 / R = y / [ 1 + ( y ) 2 ] 3 / 2 .

Metrics