Abstract

Mass density normalized extinction has been both measured and computed throughout the infrared for distribution of well-separated synthesized silver fibers. The computational basis is a code origi nally generated for use with Drudian thin fibers at millimeter wavelengths and modified for appli cation at wavelengths that include molecular and structural (crystalline) resonances as well as thicker fibers. The computation involved convolution of fiber responses over distributions for both fiber lengths and diameters. Agreement between the measured and the computed results was found to be close.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Waterman and J. C. Pedersen, “Elecromagnetic scattering and absorption by finite wires,” J. Appl. Phys. 78, 656-667 (1995).
    [CrossRef]
  2. S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
    [CrossRef]
  3. K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822-2828 (1995).
    [CrossRef] [PubMed]
  4. A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675-2678(1995).
    [CrossRef]
  5. C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
    [CrossRef]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. L. Ward, Optical Constants of Bulk Materials and Films (Adam Hilger, 1988).
  8. Sample provided by Steven Oldenburg, NanoComposix, Inc., 4878 Ronson Ct., San Diego, Calif. 92111 (personal communication, 2007).
  9. Y. Sun and Y. Xia, “Synthesis and optical properties of silver bicrystalline nanowires,” Proc. SPIE 4807, 140-149 (2002).
    [CrossRef]
  10. C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
    [CrossRef] [PubMed]
  11. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
    [CrossRef]
  12. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
    [CrossRef]
  13. W. Rasband, National Institutes of Health, USA, Image-J 1.34s (http:/rsb.info.nih.gov/ij/).
  14. C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
    [CrossRef]
  15. J. E. Bertie, John.Bertie@Telus.net or http://www.ualberta.ca/~jebhome.htm (personal communication, July 2008).
  16. With regard to randomization of fiber orientation: the fiber orientation orthogonal to the propagation vector yields the cosine squared average value of ½ while that in which the propagation vector is not orthogonal with the fiber produces a phase shift along the fiber and decays more slowly for an average of 2/3 producing a net average (product) of 1/3(J. C. Pedersen, Pedersen Research, Inc., 212 High Street, Newburyport, Mass. 01950, personal communication, 1995).

2007 (1)

S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
[CrossRef]

2006 (1)

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

2004 (1)

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

2002 (1)

Y. Sun and Y. Xia, “Synthesis and optical properties of silver bicrystalline nanowires,” Proc. SPIE 4807, 140-149 (2002).
[CrossRef]

2001 (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
[CrossRef]

1995 (3)

K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822-2828 (1995).
[CrossRef] [PubMed]

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675-2678(1995).
[CrossRef]

P. C. Waterman and J. C. Pedersen, “Elecromagnetic scattering and absorption by finite wires,” J. Appl. Phys. 78, 656-667 (1995).
[CrossRef]

1990 (1)

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Alyones, S.

S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
[CrossRef]

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

Ashmore, D. R.

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Bertie, J. E.

J. E. Bertie, John.Bertie@Telus.net or http://www.ualberta.ca/~jebhome.htm (personal communication, July 2008).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bruce, C. W.

S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
[CrossRef]

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822-2828 (1995).
[CrossRef] [PubMed]

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675-2678(1995).
[CrossRef]

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Buin, A. K.

S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
[CrossRef]

Gole, A. M.

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

Gurton, K. P.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hunyadi, S. E.

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
[CrossRef]

Jelinek, A. V.

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675-2678(1995).
[CrossRef]

Murphy, C.

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
[CrossRef]

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
[CrossRef]

Oldenburg, Steven

Sample provided by Steven Oldenburg, NanoComposix, Inc., 4878 Ronson Ct., San Diego, Calif. 92111 (personal communication, 2007).

Orendorff, C. J.

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

Pedersen, J. C.

P. C. Waterman and J. C. Pedersen, “Elecromagnetic scattering and absorption by finite wires,” J. Appl. Phys. 78, 656-667 (1995).
[CrossRef]

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Pedersen, N. E.

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Pittman, P. C.

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Rasband, W.

W. Rasband, National Institutes of Health, USA, Image-J 1.34s (http:/rsb.info.nih.gov/ij/).

Sun, Y.

Y. Sun and Y. Xia, “Synthesis and optical properties of silver bicrystalline nanowires,” Proc. SPIE 4807, 140-149 (2002).
[CrossRef]

Wang, Q.

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

Ward, L.

L. Ward, Optical Constants of Bulk Materials and Films (Adam Hilger, 1988).

Waterman, P. C.

P. C. Waterman and J. C. Pedersen, “Elecromagnetic scattering and absorption by finite wires,” J. Appl. Phys. 78, 656-667 (1995).
[CrossRef]

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Wu, S.

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

Xia, Y.

Y. Sun and Y. Xia, “Synthesis and optical properties of silver bicrystalline nanowires,” Proc. SPIE 4807, 140-149 (2002).
[CrossRef]

Appl. Opt. (2)

K. P. Gurton and C. W. Bruce, “Parametric study of the absorption cross section for a moderately conducting thin cylinder,” Appl. Opt. 34, 2822-2828 (1995).
[CrossRef] [PubMed]

C. W. Bruce, A. V. Jelinek, S. Wu, S. Alyones, and Q. Wang, “Millimeter wavelength investigation of fibrous aerosol absorption and scattering properties,” Appl. Opt. 43, 6648-6655(2004).
[CrossRef]

Appl. Phys. Lett. (1)

C. W. Bruce, D. R. Ashmore, P. C. Pittman, N. E. Pedersen, J. C. Pedersen, and P. C. Waterman, “Attenuation at a wavelength of 0.86 cm due to fibrous aerosols,” Appl. Phys. Lett. 56, 791-792 (1990).
[CrossRef]

Chem. Commun. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. 7, 617-618(2001).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

S. Alyones, C. W. Bruce, and A. K. Buin, ”Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire,” IEEE Trans. Antennas Propag. 551856-1861(2007).
[CrossRef]

Inorg. Chem. (1)

C. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, “One-dimensional colloidal gold and silver nanostructures,” Inorg. Chem. 45, 7544-7554(2006).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

P. C. Waterman and J. C. Pedersen, “Elecromagnetic scattering and absorption by finite wires,” J. Appl. Phys. 78, 656-667 (1995).
[CrossRef]

A. V. Jelinek and C. W. Bruce, “Extinction spectra of high conductivity fibrous aerosols,” J. Appl. Phys. 78, 2675-2678(1995).
[CrossRef]

J. Phys. Chem. (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” J. Phys. Chem. 105, 4065-4067 (2001).
[CrossRef]

Proc. SPIE (1)

Y. Sun and Y. Xia, “Synthesis and optical properties of silver bicrystalline nanowires,” Proc. SPIE 4807, 140-149 (2002).
[CrossRef]

Other (6)

J. E. Bertie, John.Bertie@Telus.net or http://www.ualberta.ca/~jebhome.htm (personal communication, July 2008).

With regard to randomization of fiber orientation: the fiber orientation orthogonal to the propagation vector yields the cosine squared average value of ½ while that in which the propagation vector is not orthogonal with the fiber produces a phase shift along the fiber and decays more slowly for an average of 2/3 producing a net average (product) of 1/3(J. C. Pedersen, Pedersen Research, Inc., 212 High Street, Newburyport, Mass. 01950, personal communication, 1995).

W. Rasband, National Institutes of Health, USA, Image-J 1.34s (http:/rsb.info.nih.gov/ij/).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. Ward, Optical Constants of Bulk Materials and Films (Adam Hilger, 1988).

Sample provided by Steven Oldenburg, NanoComposix, Inc., 4878 Ronson Ct., San Diego, Calif. 92111 (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Silver fiber length distributions with approximate initial form.

Fig. 2
Fig. 2

Length distribution corrected for length-dependent picture size.

Fig. 3
Fig. 3

Silver fiber infrared spectrum; a composite of many overlapping scans from several samples. DF, differential filtering.

Fig. 4
Fig. 4

Real component of index of refraction for the carrier fluid used. Data reproduced by permission of J. E. Bertie.

Fig. 5
Fig. 5

Computed extinction efficiency for fibers in isopropanol with fiber length.

Fig. 6
Fig. 6

Computed one-wavelength ( 5 μm ) optical response to the entire length distribution for the dominant long–thin component. The log form has been used here to emphasize the contributions that are due to longer fibers.

Fig. 7
Fig. 7

Diameter effects on the mass normalized extinction computed for the long–thin component of the distribution.

Fig. 8
Fig. 8

Measured and computed spectral extinction efficiencies of straight, thin silver fibers.

Metrics