Abstract

A microvalve is a key part in a multilayer microfluidic device to control the fluid flow, and its thickness directly determines its performance. In this paper, a three-dimensional measurement technology using a white-light confocal microscope is developed for measuring both the topography and thickness of microvalves. The impact of system parameters and sample parameters on measurement accuracy is discussed in detail, particularly for measurement with a dry objective. With this technique, the microvalve thicknesses before and after bonding were characterized with submicrometer measurement sensitivity and about 1μm measurement accuracy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005).
    [CrossRef] [PubMed]
  2. R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
    [CrossRef]
  3. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
    [CrossRef]
  4. K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007).
    [CrossRef]
  5. Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
    [CrossRef] [PubMed]
  6. A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
    [CrossRef] [PubMed]
  7. M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
    [CrossRef]
  8. R. M. A. Azzam, M. Elshazly-Zaghloul, and N. M. Bashara, “Combined reflection and transmission thin-film ellipsometry: a unified linear analysis,” Appl. Opt. 14, 1652-1663(1975).
    [CrossRef] [PubMed]
  9. S. W. Kim and G. H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968-5973 (1999).
    [CrossRef]
  10. J. S. Courtney-Pratt and R. L. Gregory, “Microscope with enhanced depth of field and 3-D capability,” Appl. Opt. 12, 2509-2519 (1973).
    [CrossRef] [PubMed]
  11. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
    [CrossRef]
  12. G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
    [CrossRef]
  13. C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001).
    [CrossRef] [PubMed]
  14. M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
    [CrossRef]
  15. C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000).
    [CrossRef]
  16. J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
    [CrossRef]
  17. M. Hildebrandt, Zeiss Axiotron Inspection Microscope Operating Manual preliminary version, version 0.1 (HSEB Dresden GmbH, 2005.

2007 (4)

K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007).
[CrossRef]

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
[CrossRef]

2006 (1)

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

2005 (2)

W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005).
[CrossRef] [PubMed]

G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
[CrossRef]

2004 (2)

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

2001 (1)

C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001).
[CrossRef] [PubMed]

2000 (2)

C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000).
[CrossRef]

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

1999 (1)

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

1975 (1)

1973 (1)

Azzam, R. M. A.

Bashara, N. M.

Benito-Lopez, F.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Bernengo, J.-C.

C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000).
[CrossRef]

Blake, A. J.

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Charcosset, C.

C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000).
[CrossRef]

Chou, H. P.

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Courtney-Pratt, J. S.

Cox, C.

C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001).
[CrossRef] [PubMed]

Deng, S. P.

G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
[CrossRef]

Diamond, S. L.

K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007).
[CrossRef]

Domachuk, P.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Eggleton, B. J.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Elshazly-Zaghloul, M.

Gardeniers, J. G. E.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Gharbi, T.

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

Gregory, R. L.

Grover, W. H.

W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005).
[CrossRef] [PubMed]

Gu, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Hermes, D. C.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Hildebrandt, M.

M. Hildebrandt, Zeiss Axiotron Inspection Microscope Operating Manual preliminary version, version 0.1 (HSEB Dresden GmbH, 2005.

Huang, G. H.

G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
[CrossRef]

Johnson, S. M.

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Kakuta, M.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Kim, G. H.

Kim, S. W.

Lin, B. C.

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

Long, Z. C.

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

Mathies, R. A.

W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005).
[CrossRef] [PubMed]

Meneses, J.

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

Name, M. A.

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Neeves, K. B.

K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007).
[CrossRef]

Nguyen, H. C.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Nikolakis, V.

M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
[CrossRef]

Oosterbroek, R. E.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Pearce, T. M.

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

Plata, A.

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

Qin, J. H.

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

Quake, S. R.

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

Rao, N. S.

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Reinhoudt, D. N.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Reyes, J. G.

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

Scherer, A.

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Shen, Z.

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

Sheppard, C. J. R.

C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001).
[CrossRef] [PubMed]

Snyder, M. A.

M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
[CrossRef]

Straub, M.

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

Thorsen, T.

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Tribillon, G.

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

van den Berg, A.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Verboom, W.

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Vlachos, D. G.

M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
[CrossRef]

Williams, J. C.

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Wu, D. P.

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

Xiao, S. R.

G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band-gap device,” Appl. Phys. Lett. 84, 1838-1840 (2004).
[CrossRef]

J. Membr. Sci. (2)

M. A. Snyder, D. G. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane morphology, microstructure, and polycrystallinity via laser scanning confocal microscopy: application to NaX zeolite membranes,” J. Membr. Sci. 290, 1-18(2007).
[CrossRef]

C. Charcosset and J.-C. Bernengo, “Comparison of microporous membrane morphologies using confocal scanning laser microscopy,” J. Membr. Sci. 168, 53-62 (2000).
[CrossRef]

Lab on a Chip (4)

W. H. Grover and R. A. Mathies, “An integrated microfluidic processor for single nucleotide polymorphism based DNA computing,” Lab on a Chip 5, 1033-1040 (2005).
[CrossRef] [PubMed]

K. B. Neeves and S. L. Diamond, “A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood,” Lab on a Chip 7, 638-640 (2007).
[CrossRef]

Z. C. Long, Z. Shen, D. P. Wu, J. H. Qin, and B. C. Lin, “Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis,” Lab on a Chip 7, 1819-1824 (2007).
[CrossRef] [PubMed]

A. J. Blake, T. M. Pearce, N. S. Rao, S. M. Johnson, and J. C. Williams, “Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment,” Lab on a Chip 7, 842-849(2007).
[CrossRef] [PubMed]

Micron (1)

C. Cox and C. J. R. Sheppard, “Measurement of thin coatings in the confocal microscope,” Micron 32, 701-705 (2001).
[CrossRef] [PubMed]

Microsyst. Technol. (1)

R. E. Oosterbroek, D. C. Hermes, M. Kakuta, F. Benito-Lopez, J. G. E. Gardeniers, W. Verboom, D. N. Reinhoudt, and A. van den Berg, “Fabrication and mechanical testing of glass chips for high-pressure synthetic or analytical chemistry,” Microsyst. Technol. 12, 450-454 (2006).
[CrossRef]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229-233 (1984).
[CrossRef]

Proc. SPIE (2)

G. H. Huang, S. P. Deng, and S. R. Xiao, “Inspecting polyaniline membrane with laser confocal scan microscope,” Proc. SPIE 5630, 452-456 (2005).
[CrossRef]

J. G. Reyes, J. Meneses, A. Plata, G. Tribillon, and T. Gharbi, “Chromatic confocal method for determination of the refractive index and thickness,” Proc. SPIE 5622, 805-810 (2004).
[CrossRef]

Science (1)

M. A. Name, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288, 113-116(2000).
[CrossRef]

Other (1)

M. Hildebrandt, Zeiss Axiotron Inspection Microscope Operating Manual preliminary version, version 0.1 (HSEB Dresden GmbH, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram shows (a) one dual-layer device with four microvalves and (b) microvalve structure. The gray region is the microvalve region. H1–H4 are defined in the text.

Fig. 2
Fig. 2

Configuration of the white-light confocal microscope.

Fig. 3
Fig. 3

Measurement result of a microvalve whose designed thickness is 10 μm . (a) Stacked image of the microvalve region. (b) Intensity variation along the dashed line in (a). The squares are the measured intensity, and the dashed line is its Lorentz fitting. h is the direct thickness of the microvalve. (c) 3D profile of the top surface. (d) Cross-sectional profiles of the top surface and the bottom surface of the microvalve. h is the thickness after calibration. The inset is the enlargement of the bottom surface. Δ l represents the detected depth variation on the bottom surface of the microvalve.

Fig. 4
Fig. 4

Microvalve thickness before and after bonding over a range of spin-coating speeds.

Fig. 5
Fig. 5

Illustration of when the light from a point light source is incident into a membrane. (a) Light distribution along depth. The square region represents a piece of membrane. (b) Light distribution at the focal region as circled in (a). AB is the intensity peak position, i.e., the imaging plane, when a / x is not infinitely small.

Fig. 6
Fig. 6

Light intensity variation along the depth of the mircrovalve for two different pinhole diameters (dp) ( dp = 1 and 50 μm ), respectively, when the piezo is moved 0.02 mm from the top surface. The vertical dashed line is the PFP position, and the intensity peak position is the image position. The inset is the Lorentz fitting for the intensity distribution when dp = 1 μm .

Fig. 7
Fig. 7

Light intensity variation along the depth of the mircrovalve for (a) different N.A. and (b) different FOV, when the piezo is moved 0.02 mm from the top surface. dp in (a) is set at 1 μm , and in (b) is 10 μm .

Fig. 8
Fig. 8

Relative calibration factor varies with the direct thickness. dp = 1 μm , and n = 1.43 . “*” is the experimental result. Inset: the comparison between the measured thickness and the physical thickness. The dots are the direct thickness, and the triangles are the thickness value after calibration. The dashed curve is the ideal curve. The error bar is set ± 1 μm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RCF i = h ¯ i n h ¯ i ,

Metrics