Abstract

Silicon nanotips fabricated by electron cyclotron resonance plasma etching of silicon wafers are studied by spectroscopic ellipsometry. The structure of the nanotips is composed of columns 100140nm wide and spaced by about 200nm. Ellipsometry data covering a wide spectral range from the midinfrared to the visible are described by modeling the nanotip layer as a graded uniaxial film using the Bruggeman effective medium approximation. The ellipsometry data in the infrared range reveal two absorption bands at 754 and 955cm1, which cannot be resolved with transmittance measurements. These bands indicate that the etching process is accompanied with formation of carbonaceous SiC and CHn species that largely modify the composition of the original crystalline silicon material affecting the optical response of the nanotips.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
    [CrossRef]
  2. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
    [CrossRef]
  3. C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
    [CrossRef]
  4. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
    [CrossRef]
  5. S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
    [CrossRef]
  6. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
    [CrossRef]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
    [CrossRef]
  8. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
    [CrossRef]
  9. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527-2529 (2008).
    [CrossRef] [PubMed]
  10. H. G. Tompkins and E. A. Irene, eds., Handbook of Ellipsometry (William Andrew, 2005).
    [CrossRef]
  11. H.Arwin, U.Beck, and M.Schubert, eds., Proceedings of the 4th International Conference on Spectroscopic Ellipsometry (Wiley-VCH, 2007).
  12. S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
    [CrossRef]
  13. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
    [CrossRef]
  14. G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” [Appl. Phys. Lett. 69, 371 (1996)], Appl. Phys. Lett. 69, 2137 (1996).
    [CrossRef]
  15. K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
    [CrossRef]
  16. B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
    [CrossRef]
  17. K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
    [CrossRef]
  18. P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
    [CrossRef]
  19. S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, 1993).
    [PubMed]

2008 (4)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
[CrossRef]

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527-2529 (2008).
[CrossRef] [PubMed]

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

2007 (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

2006 (2)

S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

2005 (2)

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

2004 (2)

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

2003 (1)

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

2002 (1)

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

1998 (1)

P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
[CrossRef]

1996 (2)

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” [Appl. Phys. Lett. 69, 371 (1996)], Appl. Phys. Lett. 69, 2137 (1996).
[CrossRef]

Amassian, A.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Bourée, J. E.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Calcagno, L.

P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
[CrossRef]

Chang, Y. C.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

Chen, C. F.

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
[CrossRef]

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Cuniot, M.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Das, D.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Dixmier, J.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Doucey, B.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Esser, N.

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

Gensch, M.

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

Hilfiker, J. N.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Hinrichs, K.

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Hsu, S. H.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

Hwang, J. S.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Imhoff, D.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” [Appl. Phys. Lett. 69, 371 (1996)], Appl. Phys. Lett. 69, 2137 (1996).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Jiang, B.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
[CrossRef]

Jiang, P.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
[CrossRef]

Kaminska, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

Kim, J. K.

Kim, T. J.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Kim, Y. D.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Kim, Y. S.

Kuo, M.-L.

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Lin, C. J.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Lin, G. R.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Lin, S.-Y.

Liu, E. S.

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

Makhtari, A.

P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
[CrossRef]

Martinu, L.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” [Appl. Phys. Lett. 69, 371 (1996)], Appl. Phys. Lett. 69, 2137 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

Mont, F. W.

Moudni, R.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Musumeci, P.

P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Perkowitz, S.

S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, 1993).
[PubMed]

Poxson, D. J.

Robbie, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

Rommeluére, M.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Röseler, A.

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

Schubert, E. F.

Sun, C. H.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
[CrossRef]

Ténégal, F.

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

Tsai, J.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

Wu, C. T.

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

Appl. Phys Lett. (1)

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys Lett. 92, 061112(2008).
[CrossRef]

Appl. Phys. Lett. (4)

H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 1420-1422 (2003).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371-373 (1996).
[CrossRef]

G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” [Appl. Phys. Lett. 69, 371 (1996)], Appl. Phys. Lett. 69, 2137 (1996).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008).
[CrossRef]

Chem. Mater. (1)

S. Chattopadhyay, H. C. Lo, C. H. Hsu, L. C. Chen, and K. H. Chen, “Surface-enhanced Raman spectroscopy using self-assembled silver nanoparticles on silicon nanotips,” Chem. Mater. 17, 553-559 (2005).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

S. Chattopadhyay, L. C. Chen, and K. H. Chen, “Nanotips: growth, model, and applications,” Crit. Rev. Solid State Mater. Sci. 31, 15-53 (2006).
[CrossRef]

J. Appl. Phys. (1)

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97, 013511 (2005).
[CrossRef]

J. Mater. Sci. (1)

B. Doucey, M. Cuniot, R. Moudni, F. Ténégal, J. E. Bourée, D. Imhoff, M. Rommeluére, and J. Dixmier, “Optical properties and local atomic order in nonhydrogenated amorphous silicon carbonitride films,” J. Mater. Sci. 37, 2737-2745(2002).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Hinrichs, M. Gensch, A. Röseler, and N. Esser, “Infrared ellipsometric study on the initial stages of oxide growth on Si (001),” J. Phys. Condens. Matter 16, S4335-S4343 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. H. Hsu, Y. F. Huang, L. C. Chen, S. Chattopadhyay, K. H. Chen, H. C. Lo, and C. F. Chen, “Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching,” J. Vac. Sci. Technol. B 24, 308-311 (2006).
[CrossRef]

Mater. Sci. Eng. A (1)

P. Musumeci, L. Calcagno, and A. Makhtari, “Relaxation phenomena in keV-ion implanted hydrogenated amorphous silicon carbide,” Mater. Sci. Eng. A 253, 296-300 (1998).
[CrossRef]

Nano. Lett. (1)

C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip array fabrication,” Nano. Lett. 4, 471-475 (2004).
[CrossRef]

Nature Nanotech. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature Nanotech. 2, 770-774(2007).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi A (1)

S. H. Hsu, E. S. Liu, Y. C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C. J. Lin, and G. R. Lin, “Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling,” Phys. Status Solidi A 205, 876-879 (2008).
[CrossRef]

Other (3)

S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic, 1993).
[PubMed]

H. G. Tompkins and E. A. Irene, eds., Handbook of Ellipsometry (William Andrew, 2005).
[CrossRef]

H.Arwin, U.Beck, and M.Schubert, eds., Proceedings of the 4th International Conference on Spectroscopic Ellipsometry (Wiley-VCH, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Image of scanning electron microscopy for the nanotip sample with a layer thickness of 909 nm as defined by the white lines. (b) Multilayer model used for modeling the SE data (see text for details).

Fig. 2
Fig. 2

Experimental variable angle ellipsometric spectra and best fit using the multilayer model in Fig. 1a considering c-Si as the nanotip material.

Fig. 3
Fig. 3

Experimental variable angle ellipsometric spectra and best fit using the multilayer model in Fig. 1a considering the model dielectric function for the nanotips described in the text.

Fig. 4
Fig. 4

Complex refractive index obtained with the model dielectric function approach for the nanotips: Jellison–Modine (J-M) expression (dashed curves) and with the addition of two Gaussian absorption bands in the infrared J - M + G (solid curves). For comparison, the refractive index of c-Si is included (dash-dot curves).

Fig. 5
Fig. 5

Components of the effective dielectric function tensor as a function of void volume fraction f v : (a) No absorbing constituent materials; c-Si with ε = 12.25 (solid lines) and nanotip material 9.00 (dashed lines) at 0.5 eV . (b) Nanotip material with ε = 8.2 + i 12.3 at 0.09 eV . The labels L-1 to L-5 identify data corresponding to f v of sublayers in Table 1.

Fig. 6
Fig. 6

Depth profile of the complex refractive index components at 2.0 eV in the nanotip layer where the silicon substrate is at 0 nm . (a) Real parts n x , y and n z . (b) Imaginary parts k x , y and k z .

Fig. 7
Fig. 7

Experimental and best fit spectra for the ellipsometric angles (a) Ψ and (b) Δ in the range of 300 1800 cm 1 using two Gaussian absorption bands centered at 754 and 955 cm 1 . (c) Refractive index and (d) extinction coefficient for the nanotip material (solid curves) and effective uniaxial components for sublayer 4 of the multilayer model (see text for details).

Fig. 8
Fig. 8

Transmittance spectra at normal incidence for the nanotips and the silicon substrate. The insert shows the transmittance spectra of nanotip sample normalized to that of the Si substrate for normal ( 0 ° ) and oblique incidence ( 50 ° ).

Tables (2)

Tables Icon

Table 1 Parameter Values and Confidence Limits Obtained from Fitting SE Data on SiNTs with a Multilayer Model a

Tables Icon

Table 2 Values and Confidence Limits of Parameters for the Jellison–Modine and Gaussian Model Dielectric Functions Representing the Nanotip Optical Response

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ = r p r s = tan Ψ exp ( i Δ ) ,
MSE = 1 2 N M i = 1 N [ ( Ψ i mod Ψ i exp σ Ψ i exp ) 2 + ( Δ i mod Δ i exp σ Δ i exp ) 2 ] ,
β = 4 π d λ N f 2 N 0 2 sin 2 ϕ i ,
f A ε A ε j ε j + q j ( ε A ε j ) + ( 1 f A ) ε B ε j ε j + q j ( ε B ε j ) = 0 ; j = x , y ,   or   z .
ε 2 ( J - M ) = A E 0 C ( E E g ) 2 ( E 2 E 0 2 ) 2 + C 2 E 2 · 1 E for     E > E g , ε 2 ( J - M ) = 0 for     E E g , ε 1 ( J - M ) = ε + KK ( ε 2 ( J - M ) ) ,
ε 2 ( G ) = j = 1 2 [ A j e ( E E c j B j ) 2 + A j e ( E + E c j B j ) 2 ] ,
ε ( E ) = ε + ε G ( E ) + ε J - M ( E ) .

Metrics