Abstract

A tellurium-doped germanosilicate optical fiber was developed by modified chemical vapor deposition and solution doping techniques. Using the continuous-wave self-phase modulation method, the nonresonant nonlinear refractive index, n2, was measured to be 5.52×1020m2/W, which is 2 to 3 times that of the undoped germanosilicate glass fiber. Polyhedron structures TeO3 and TeO4 with GeO4 and SiO4 are believed responsible for lower phonon energy, more nonbridging oxygens, and a larger hyperpolarization, leading to the observed higher nonresonant optical nonlinearity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08 μm,” Electron. Lett. 23, 1324-1326 (1987).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  3. P. Petropoulos, T. M. Monro, H. Ebendorff-Herdepriem, K. Frampton, R. C. Moore, and D. J. Richardson, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3658-3573 (2003).
  4. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.
  5. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
    [CrossRef]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082-5087(2004).
    [CrossRef]
  7. A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009).
    [CrossRef]
  8. R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
    [CrossRef]
  9. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651-13656 (2008).
    [CrossRef]
  10. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
    [CrossRef]
  11. M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
    [CrossRef]
  12. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
    [CrossRef]
  13. A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007).
    [CrossRef]
  14. A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
    [CrossRef]
  15. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007).
    [CrossRef]
  16. A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
    [CrossRef]
  17. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef]
  18. K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).
  19. P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
    [CrossRef]
  20. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).
  21. R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007).
    [CrossRef]
  22. G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
    [CrossRef]
  23. X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
    [CrossRef]
  24. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, and K. Hirao, “Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,” Opt. Lett. 21, 1637-1639(1996).
    [CrossRef]
  25. D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
    [CrossRef]

2009 (1)

2008 (4)

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651-13656 (2008).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
[CrossRef]

2007 (5)

R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007).
[CrossRef]

A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007).
[CrossRef]

A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007).
[CrossRef]

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

2006 (2)

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

2005 (1)

G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
[CrossRef]

2001 (1)

K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).

1997 (1)

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

1996 (2)

1989 (1)

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

1987 (1)

K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08 μm,” Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Arai, Y.

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

Asimakis, S.

Borreli, N. F.

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Boskovic, A.

Byron, K. C.

K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08 μm,” Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

Camerlingo, A.

Cardinal, T.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Chernikov, S. V.

Chung, Y.

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007).
[CrossRef]

Couzi, M.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Dasgupta, S.

Dumbaugh, W. H.

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Ebendorff-Heidepriem, H.

Ebendorff-Herdepriem, H.

Feng, X.

Finazzi, V.

Flanagan, J. C.

Frampton, K.

Frampton, K. E.

Fujiwara, S.

Furniss, D.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Gruner-Nielsen, L.

Hall, D. W.

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Han, W.-T.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007).
[CrossRef]

A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007).
[CrossRef]

Hasegawa, T.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Hirao, K.

Horak, P.

Jain, H.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Jha, A.

P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).

Jose, R.

R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

Joshi, P.

P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
[CrossRef]

Kanbara, H.

Kiang, K.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Kikuchi, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
[CrossRef]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Kim, B. H.

Koizumi, F.

Levring, O. A.

Li, Q.

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Lin, A.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007).
[CrossRef]

A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate glass fiber with high resonant nonlinearity,” Opt. Express 15, 3665-3672 (2007).
[CrossRef]

Liu, X.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

Loh, W. H.

Meng, Z.

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Ming, N.

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Monro, T. M.

Moon, D. S.

Moore, R. C.

Murugan, G. Senthil

G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).

Nagashima, T.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Nakajima, K.

K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).

Newhouse, M. A.

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

O'Donnell, M. D.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Ohara, S.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Ohashi, M.

K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).

Ohishi, Y.

R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007).
[CrossRef]

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
[CrossRef]

Omae, T.

K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).

Pattnaik, R. K.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Peng, B.

Petropoulos, P.

Prasad, S.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Price, J. H. V.

Qin, G.

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

Ramme, M.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Richardson, D. J.

Richardson, K.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Rivero, C.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Rutt, H. N.

Seddon, A. B.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Shen, S.

P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).

Stegeman, G.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Stegeman, R.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Stolen, R.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Sugimoto, N.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
[CrossRef]

N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, and K. Hirao, “Ultrafast response of third-order optical nonlinearity in glasses containing Bi2O3,” Opt. Lett. 21, 1637-1639(1996).
[CrossRef]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Sun, C.

Sun, G.

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

Suzuki, T.

G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
[CrossRef]

Taira, K.

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
[CrossRef]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

Tanaka, K.

Taylor, J. R.

Tikhomirov, V. K.

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

Toulouse, J.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Wang, J.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

Wang, Y.

Watekar, P. R.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791-793 (2009).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

Weildman, D. L.

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

White, N. M.

Zhao, W.

Zhu, X.

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

Appl. Phys. Lett. (5)

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901 (2008).
[CrossRef]

R. Jose and Y. Ohishi, “Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO2─ZnO─Nb2O5─MoO3 quaternary glass system,” Appl. Phys. Lett. 90, 211104(2007).
[CrossRef]

G. Senthil Murugan, T. Suzuki, and Y. Ohishi, “Tellurite glasses for ultrabroadband fiber Raman amplifiers,” Appl. Phys. Lett. 86, 161109 (2005).
[CrossRef]

X. Zhu, Q. Li, N. Ming, and Z. Meng, “Origin of optical nonlinearity for PbO, TiO2, K2O, and SiO2 optical glasses,” Appl. Phys. Lett. 71, 867-869 (1997).
[CrossRef]

D. W. Hall, M. A. Newhouse, N. F. Borreli, W. H. Dumbaugh, and D. L. Weildman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Electron. Lett. (2)

K. C. Byron, “Kerr modulation of signal at 1.3 and 1.5 μm in polarization-maintaining fiber pumped at 1.08 μm,” Electron. Lett. 23, 1324-1326 (1987).
[CrossRef]

K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166-167 (2002).
[CrossRef]

IEEE Proc. Optoelectron. (1)

K. Nakajima, T. Omae, and M. Ohashi, “Conditions for measuring nonlinear refractive index n2 of various single-mode fibers using cw-SPM method,” IEEE Proc. Optoelectron. 148, 209-214 (2001).

J. Am. Ceram. Soc. (1)

M. D. O'Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448-1457 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Joshi, S. Shen, and A. Jha, “Er3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm,” J. Appl. Phys. 103, 083543 (2008).
[CrossRef]

J. Nanophoton. (1)

A. Lin and W.-T. Han, “Au nanoparticles incorporated germano-silicate glass fiber with high resonant nonlinearity,” J. Nanophoton. 1, 013554 (2007).
[CrossRef]

J. Non-Cryst. Solids (3)

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510-513 (2006).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907-3909 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in Te2O─BaO─SrO─Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651-L653 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5 μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215-6227 (2000).

Other (2)

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W−1·km−1,” in Optical Fiber Communication Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Block diagram of the n 2 measurement setup using the cw-SPM method. PC, polarization controller; BPF, bandpass filter; ATT, optical attenuator; OSA, optical spectrum analyzer; FUT, fiber under test [16].

Fig. 2
Fig. 2

(a) cw-SPM spectra of the Te-fiber tested in this study and (b) phase shift φ SPM for different pump powers from the EDFA output.

Tables (1)

Tables Icon

Table 1 Nonresonant Third-Order Nonlinear Optical Parameters of the Te-Fiber

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 0 = J 1 2 ( φ SPM ) + J 2 2 ( φ SPM ) J 0 2 ( φ SPM ) + J 1 2 ( φ SPM ) ,
n 2 = λ A eff 4 π L eff [ φ SPM P AVG ] = λ A eff 4 π L eff κ a c ,
γ = 2 π λ n 2 A eff = φ SPM P AVG 1 2 L eff = κ a c 2 L eff ,

Metrics