Abstract

This paper focuses on the performance of a synchronous time-slotted optical packet switch. An optical packet switch with fixed wavelength converter arrays is proposed. The proposed node architecture uses shared fixed wavelength converter arrays and recirculation fiber delay lines to resolve optical packet collisions. To make full use of the fixed wavelength converter arrays and fiber delay lines, two control schemes are presented and studied. The packet loss probabilities of the proposed node architecture are evaluated in detail by simulation experiments.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
    [CrossRef]
  2. D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol. 16, 2081-2094(1998).
    [CrossRef]
  3. S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
    [CrossRef]
  4. S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol. 16, 729-735 (1998).
    [CrossRef]
  5. V. Eramo and M. Listanti, “Wavelength converter sharing in a WDM optical packet switch: dimensioning and performance issue,” Comput. Netw. 32, 633-651 (2000).
    [CrossRef]
  6. L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
    [CrossRef]
  7. Z. Haas, “The “staggering switch”: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925-936(1993).
    [CrossRef]
  8. A. Pattavina, “Architectures and performance of optical packet switching nodes for IP networks,” J. Lightwave Technol. 23, 1023-1032 (2005).
    [CrossRef]
  9. R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
    [CrossRef]
  10. Z. Zhang and Y. Yang, “Performance modelling of bufferless WDM packet switching networks with limited range wavelength conversion,” IEEE Trans. Commun. 54, 1473-1480(2006).
    [CrossRef]
  11. A. Zalesky and R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photonics Technol. Lett. 18, 352-354 (2006).
    [CrossRef]
  12. V. Eramo, “An analytical model for TOWC dimensioning in a multifiber optical-packet switch,” J. Lightwave Technol. 24, 4799-4810 (2006).
    [CrossRef]
  13. T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
    [CrossRef]
  14. V. Eramo, M. Listanti, and A. Germoni, “Cost evaluation of optical packet switches equipped with limited-range and full-range converters for contention resolution,” J. Lightwave Technol. 26, 390-407 (2008).
    [CrossRef]

2008

2006

V. Eramo, “An analytical model for TOWC dimensioning in a multifiber optical-packet switch,” J. Lightwave Technol. 24, 4799-4810 (2006).
[CrossRef]

Z. Zhang and Y. Yang, “Performance modelling of bufferless WDM packet switching networks with limited range wavelength conversion,” IEEE Trans. Commun. 54, 1473-1480(2006).
[CrossRef]

A. Zalesky and R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photonics Technol. Lett. 18, 352-354 (2006).
[CrossRef]

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
[CrossRef]

2005

R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
[CrossRef]

A. Pattavina, “Architectures and performance of optical packet switching nodes for IP networks,” J. Lightwave Technol. 23, 1023-1032 (2005).
[CrossRef]

2000

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

V. Eramo and M. Listanti, “Wavelength converter sharing in a WDM optical packet switch: dimensioning and performance issue,” Comput. Netw. 32, 633-651 (2000).
[CrossRef]

1999

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
[CrossRef]

1998

1997

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

1993

Z. Haas, “The “staggering switch”: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925-936(1993).
[CrossRef]

Almeida, C.

R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
[CrossRef]

Andonovic, I.

Callegati, F.

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
[CrossRef]

Chia, M. C.

Danielsen, S. L.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol. 16, 729-735 (1998).
[CrossRef]

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Dixit, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Durhuus, T.

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Eramo, V.

Germoni, A.

Haas, Z.

Z. Haas, “The “staggering switch”: an electronically controlled optical packet switch,” J. Lightwave Technol. 11, 925-936(1993).
[CrossRef]

Hunter, D. K.

Joergensen, C.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol. 16, 729-735 (1998).
[CrossRef]

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Jue, J. P.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
[CrossRef]

Listanti, M.

V. Eramo, M. Listanti, and A. Germoni, “Cost evaluation of optical packet switches equipped with limited-range and full-range converters for contention resolution,” J. Lightwave Technol. 26, 390-407 (2008).
[CrossRef]

V. Eramo and M. Listanti, “Wavelength converter sharing in a WDM optical packet switch: dimensioning and performance issue,” Comput. Netw. 32, 633-651 (2000).
[CrossRef]

Lu, K.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
[CrossRef]

Mikkelsen, B.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol. 16, 729-735 (1998).
[CrossRef]

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Mukherjee, B.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Pattavina, A.

Pelegrini, J. U.

R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
[CrossRef]

Stubkjaer, K. E.

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Analysis of a WDM packet switch with improved performance under bursty traffic conditions due to tuneable wavelength converters,” J. Lightwave Technol. 16, 729-735 (1998).
[CrossRef]

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, “WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance,” J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

Tamil, L.

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
[CrossRef]

Tancevski, L.

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
[CrossRef]

Tucker, R. S.

A. Zalesky and R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photonics Technol. Lett. 18, 352-354 (2006).
[CrossRef]

Waldman, H.

R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
[CrossRef]

Yang, Y.

Z. Zhang and Y. Yang, “Performance modelling of bufferless WDM packet switching networks with limited range wavelength conversion,” IEEE Trans. Commun. 54, 1473-1480(2006).
[CrossRef]

Yao, S.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

Zalesky, A.

A. Zalesky and R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photonics Technol. Lett. 18, 352-354 (2006).
[CrossRef]

Zhang, T.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
[CrossRef]

Zhang, Z.

Z. Zhang and Y. Yang, “Performance modelling of bufferless WDM packet switching networks with limited range wavelength conversion,” IEEE Trans. Commun. 54, 1473-1480(2006).
[CrossRef]

Comput. Netw.

V. Eramo and M. Listanti, “Wavelength converter sharing in a WDM optical packet switch: dimensioning and performance issue,” Comput. Netw. 32, 633-651 (2000).
[CrossRef]

IEEE Commun. Lett.

R.C. Almeida, Jr., J. U. Pelegrini, and H. Waldman, “A generic-traffic optical buffer modeling for asynchronous optical switching networks,” IEEE Commun. Lett. 9, 175-177 (2005).
[CrossRef]

IEEE Commun. Mag.

S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: an overview,” IEEE Commun. Mag. 38, 84-94 (2000).
[CrossRef]

IEEE J. Sel. Areas Commun.

T. Zhang, K. Lu, and J. P. Jue, “Shared fiber delay line buffers in asynchronous optical packet switches,” IEEE J. Sel. Areas Commun. 24, 118-127 (2006).
[CrossRef]

IEEE Photonics Technol. Lett.

L. Tancevski, L. Tamil, and F. Callegati, “Nondegenerate buffers: an approach for building large optical memories,” IEEE Photonics Technol. Lett. 11, 1072-1074 (1999).
[CrossRef]

A. Zalesky and R. S. Tucker, “Dynamically concatenated wavelength converters,” IEEE Photonics Technol. Lett. 18, 352-354 (2006).
[CrossRef]

IEEE Trans. Commun.

Z. Zhang and Y. Yang, “Performance modelling of bufferless WDM packet switching networks with limited range wavelength conversion,” IEEE Trans. Commun. 54, 1473-1480(2006).
[CrossRef]

J. Lightwave Technol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Architecture of SWCA.

Fig. 2
Fig. 2

Architecture of FWC array.

Fig. 3
Fig. 3

Model for bursty traffic.

Fig. 4
Fig. 4

PLP of the SWCA versus the number of FDL, B.

Fig. 5
Fig. 5

PLP of the SWCA versus traffic load per wavelength channel, ρ w .

Fig. 6
Fig. 6

PLP of the SWCA versus the number of FWC arrays, M.

Fig. 7
Fig. 7

PLP of the SWCA versus the number of wavelength channels, W.

Fig. 8
Fig. 8

PLP of the SWCA versus average burst length, B L .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( λ i , λ j ) = { 0 if the FWC is busy 1 if the FWC is idle .
P L = 1 1 p b ,
ρ w = p a 1 p b + p a p b ,

Metrics