Abstract

We report long period grating (LPG) devices based on a hybrid architecture incorporating photopatternable fluorinated poly(aryl ether ketone) and silica layers for applications in wavelength filtering and power distribution. The grating structure was implemented using a periodic corrugation on a thermally oxidized silica lower cladding layer, a photopatterned fluorinated polymer ridge waveguide, and a simi lar polymer top cladding. In this design, the corrugated silica layer allows a highly stable grating structure, while the fluorinated polymer offers a low propagation loss and easy processability. Strong rejection bands have been demonstrated in the C+L wavelength band, in good agreement with theoretical calculations. The fabricated LPG devices show a thermal dependence of 1.5nm/°C. Based on this design, an array of waveguides incorporating LPGs has also been fabricated. Distribution of light at the resonance wavelength across all the channels from a single input has been demonstrated. These results are promising for power distribution in photonic network applications or on-chip sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
    [CrossRef]
  2. A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
    [CrossRef]
  3. M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001).
    [CrossRef]
  4. A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
    [CrossRef]
  5. D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Ríos, G. Anzueto-Sánchez, J. A. Álvarez-Chávez, R. Selvas-Aguilar, and J. J. Sánchez-Mondragón, “Ultra-widely tunable long-period holey-fiber grating by the use of mechanical pressure,” Appl. Opt. 46, 307-311 (2007).
    [CrossRef] [PubMed]
  6. L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
    [CrossRef]
  7. S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
    [CrossRef]
  8. K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
    [CrossRef]
  9. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
    [CrossRef] [PubMed]
  10. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25, 779-786(2007).
    [CrossRef]
  11. V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
    [CrossRef]
  12. G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
    [CrossRef]
  13. L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549-1552 (2008).
    [CrossRef] [PubMed]
  14. N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
    [CrossRef]
  15. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
    [CrossRef] [PubMed]
  16. V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41, 6351-6355 (2002).
    [CrossRef] [PubMed]
  17. Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21, 3399-3405 (2003).
    [CrossRef]
  18. Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,” Opt. Express 13, 1150-1160(2005).
    [CrossRef] [PubMed]
  19. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
    [CrossRef]
  20. M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
    [CrossRef]
  21. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
    [CrossRef]
  22. M.-S. Kwon and S.-Y. Shin, “Tunable notch filter using a thermo-optic long-period grating,” J. Lightwave Technol. 22, 1968-1975 (2004).
    [CrossRef]
  23. M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).
    [CrossRef]
  24. Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
    [CrossRef] [PubMed]
  25. J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
    [CrossRef]
  26. Y. Bai and K. S. Chiang, “Analysis of long-period waveguide grating arrays,” J. Lightwave Technol. 24, 3856-3863(2006).
    [CrossRef]
  27. Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14, 12644-12654 (2006).
    [CrossRef] [PubMed]
  28. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22 (5), 1358-1366 (2004).
    [CrossRef]

2009 (1)

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (7)

Y. Bai and K. S. Chiang, “Analysis of long-period waveguide grating arrays,” J. Lightwave Technol. 24, 3856-3863(2006).
[CrossRef]

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14, 12644-12654 (2006).
[CrossRef] [PubMed]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
[CrossRef]

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
[CrossRef]

G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
[CrossRef]

N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
[CrossRef]

2005 (6)

Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,” Opt. Express 13, 1150-1160(2005).
[CrossRef] [PubMed]

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).
[CrossRef]

2004 (3)

2003 (3)

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

2002 (1)

2001 (1)

M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001).
[CrossRef]

1997 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Álvarez-Chávez, J. A.

Anzueto-Sánchez, G.

Bai, Y.

Bhatia, V.

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Callender, C. L.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

Campbell, D.

Ceballos-Herrera, D. E.

Chan, F. Y. M.

Chao, N.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Chen, H. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chen, N.

N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
[CrossRef]

Chen, X.-W.

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

Chiang, K. S.

Chow, C. K.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Churikov, V. M.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Claus, R. O.

Cui, Y.

N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
[CrossRef]

Das, M.

M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001).
[CrossRef]

Day, M.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

Ding, J.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

Ding, J.-F.

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

Dong, X.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Feinberg, J.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
[CrossRef]

Genack, A. Z.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Grobnic, D.

Grubsky, V.

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
[CrossRef]

Guan, Z.-G.

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

He, S.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549-1552 (2008).
[CrossRef] [PubMed]

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

Jiang, J.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

Jiang, K. S.

L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Klimov, D.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
[CrossRef]

Kolber, Z.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
[CrossRef]

Kopp, V. I.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
[CrossRef]

Kumar, P. S.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Kumar, R. D.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Kwon, M.-S.

M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Tunable notch filter using a thermo-optic long-period grating,” J. Lightwave Technol. 22, 1968-1975 (2004).
[CrossRef]

Lee, S. T.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Liu, Q.

Lor, K. P.

Y. Bai, Q. Liu, K. P. Lor, and K. S. Chiang, “Widely tunable long-period waveguide grating couplers,” Opt. Express 14, 12644-12654 (2006).
[CrossRef] [PubMed]

Q. Liu, K. S. Chiang, and K. P. Lor, “Long-period gratings in polymer ridge waveguides,” Opt. Express 13, 1150-1160(2005).
[CrossRef] [PubMed]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

Lu, C.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549-1552 (2008).
[CrossRef] [PubMed]

L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
[CrossRef]

Lu, P.

Martínez-Ríos, A.

Mihailov, S. J.

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
[CrossRef]

Nampoori, V. P. N.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Neugroschl, D.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Ng, M. N.

Noad, J. P.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
[CrossRef]

Qi, Y.

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Y. Qi, J. Jiang, C. L. Callender, M. Day, and J. Ding, “Cross-linkable bromo-fluorinated poly(arylene ether ketone)s for photonic device applications,” Appl. Opt. 45, 7480-7487(2006).
[CrossRef] [PubMed]

Radhakrishnan, P.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Rastogi, V.

Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol. 21, 3399-3405 (2003).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt. 41, 6351-6355 (2002).
[CrossRef] [PubMed]

Rego, G. M.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
[CrossRef]

Salgado, H. M.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
[CrossRef]

Sánchez-Mondragón, J. J.

Santos, J. L.

G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
[CrossRef]

Selvas-Aguilar, R.

Shao, L.-Y.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549-1552 (2008).
[CrossRef] [PubMed]

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

Shin, S.-Y.

M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Tunable notch filter using a thermo-optic long-period grating,” J. Lightwave Technol. 22, 1968-1975 (2004).
[CrossRef]

Singer, J.

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Su, L.

L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
[CrossRef]

Tam, H. Y.

Tam, H.-Y.

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

Thyagarajan, K.

M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001).
[CrossRef]

Torres-Gómez, I.

Vallabhan, C. P. G.

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648-650 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Wang, K.

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
[CrossRef]

Yan, J.-H.

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

Yun, B.

N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
[CrossRef]

Zhang, A. P.

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

Zhao, J.

Appl. Opt. (4)

IEEE Photon. Technol. Lett. (8)

M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).
[CrossRef]

V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18, 2296-2298 (2006).
[CrossRef]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chen, V. Rastogi, and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett. 15, 1094-1096 (2003).
[CrossRef]

M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17, 2595-2597(2005).
[CrossRef]

L. Su, K. S. Jiang, and C. Lu, “CO2-laser-induced long-period gratings in graded-index multimode fibers for sensor applications,” IEEE Photon. Technol. Lett. 18, 190-192 (2006).
[CrossRef]

A. P. Zhang, X.-W. Chen, J.-H. Yan, Z.-G. Guan, S. He, and H.-Y. Tam, “Optimization and fabrication of stitched long-period gratings for gain flattening of ultrawide-band EDFAs,” IEEE Photon. Technol. Lett. 17, 2559-2561 (2005).
[CrossRef]

A. P. Zhang, L.-Y. Shao, J.-F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Commun. (4)

G. M. Rego, J. L. Santos, and H. M. Salgado, “Refractive index measurement with long-period gratings arc-induced in pure-silica-core fibres,” Opt. Commun. 259, 598-602 (2006).
[CrossRef]

N. Chen, B. Yun, and Y. Cui, “Cladding index modulated fiber grating,” Opt. Commun. 259, 587-591 (2006).
[CrossRef]

M. Das and K. Thyagarajan, “Dispersion compensation in transmission using uniform long period fiber gratings,” Opt. Commun. 190, 159-163 (2001).
[CrossRef]

S. T. Lee, R. D. Kumar, P. S. Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, “Long period gratings in multi-mode optical fibers: application in chemical sensing,” Opt. Commun. 224, 237-241 (2003).
[CrossRef]

Opt. Eng. (2)

K. Wang, D. Klimov, and Z. Kolber, “Seawater pH sensor based on the long period grating in a single-mode-multimode-single-mode structure,” Opt. Eng. 48, 034401 (2009).
[CrossRef]

J. Jiang, C. L. Callender, J. P. Noad, Y. Qi, J. Ding, and M. Day, “Photopatterning of waveguide devices using fluorinated poly(arylene ether ketone),” Opt. Eng. 46, 074601(2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, “Chiral fiber gratings,” Science 305, 74-75(2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Grating structure based on the lower cladding corrugation, where Λ is the grating period and λ R is the resonance wavelength. (b) Structure diagram of the LPG waveguide array.

Fig. 2
Fig. 2

Resonance wavelength as a function of grating period for the fundamental core mode to the first four cladding modes of a 6 μm × 3 μm waveguide with a 6 μm thick upper cladding.

Fig. 3
Fig. 3

(a) Simulation of the period as a function of resonance wavelength for the 6 μm × 3 μm waveguide for T M 0 T M 1 with cladding thickness ranging from 5.8 to 6.8 μm . (b) Simulation of the resonance wavelength as function of cladding thickness for the 6 μm × 3 μm waveguide for T M 0 T M 1 at a period of 180 μm .

Fig. 4
Fig. 4

SEM picture of etched lower Si O 2 cladding layer; the height of the patterns is 100 nm .

Fig. 5
Fig. 5

SEM picture of photopatterned ridge waveguide with the photosensitive poly(aryl ether ketone) prior to coating cladding.

Fig. 6
Fig. 6

(a) Transmission spectrum (TM polarization) for a typical LPG (waveguide size 6.2 μm × 3.2 μm with average cladding thickness 6.4 μm and length 28 mm ). Experimental data, solid curve; simulation data, dotted curve. (b) Calculated relationship between period and wavelength for the LPG in (a).

Fig. 7
Fig. 7

Wavelength shift of the fabricated hybrid polymer/silica LPG at 20 ° C and 40 ° C .

Fig. 8
Fig. 8

Temperature dependence of the fabricated polymer/silica hybrid LPG.

Fig. 9
Fig. 9

Output light distribution in a ten-waveguide LPG array, as captured on an infrared camera.

Fig. 10
Fig. 10

Light intensity from the ten-waveguide grating array.

Fig. 11
Fig. 11

Spectra of the planar grating array. Upper curve is from the input channel; Curve R1 is from the channel immediately to the right of the input waveguide; curves L1 and L2 are from those immediately to the left.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ R = ( N co N cl ) / Λ ,

Metrics