Abstract

We report long period grating (LPG) devices based on a hybrid architecture incorporating photopatternable fluorinated poly(aryl ether ketone) and silica layers for applications in wavelength filtering and power distribution. The grating structure was implemented using a periodic corrugation on a thermally oxidized silica lower cladding layer, a photopatterned fluorinated polymer ridge waveguide, and a simi lar polymer top cladding. In this design, the corrugated silica layer allows a highly stable grating structure, while the fluorinated polymer offers a low propagation loss and easy processability. Strong rejection bands have been demonstrated in the C+L wavelength band, in good agreement with theoretical calculations. The fabricated LPG devices show a thermal dependence of 1.5nm/°C. Based on this design, an array of waveguides incorporating LPGs has also been fabricated. Distribution of light at the resonance wavelength across all the channels from a single input has been demonstrated. These results are promising for power distribution in photonic network applications or on-chip sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription