Abstract

A numerical investigation of the performance of an automatic gain-controlled semiconductor optical preamplified receiver for a 4×25Gbits/s wavelength division multiplexing transmission system with a 0–40 km reach is presented. We show that the control scheme acting on the semiconductor optical amplifier (SOA) gain increases the input power dynamic range of the optical receiver, thus allowing the transmission system to operate error free regardless of fiber length. In contrast, a fixed-gain optical receiver shows poor performance that is due to SOA nonlinearity and photodiode overload, which are well captured by the corresponding simulation models. The device represents a practical alternative to the next-generation high-speed Ethernet technology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D'Ambrosia, “The next generation of Ethernet,” IEEE Commun. Mag. 46(2), S8-S15 (2008).
    [CrossRef]
  2. M. Duelk, “Next-generation 100 G Ethernet,” in 31st European Conference on Optical Communications (IEEE, 2005), Vol. 5, pp. 15-18.
  3. J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6-9 (2007).
    [CrossRef]
  4. C. Cole, P. Anslow, and J. King, “Update to adopted 100GE 40 km SMF PMD baseline,” presented at the IEEE P802.3ba Task Force Meeting, Denver, Colo., July 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_01_0708.pdf.
  5. R. Gutiérrez-Castrejón and M. Duelk, “Impact of the semiconductor optical pre-amplifier in the performance of the 100 GbE4×25 Gb/s40 km PHY under different transmitter conditions,” in Proceedings of the Asia Opto-Electronics Conference (AOE 2008) (IEEE, 2008), p. FG3.
  6. C. Cole and T. Tsegaye, “100GE 40 km SMF technology limitation,” presented at the IEEE P802.3ba Task Force Meeting, Portland, Oreg., January 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_02_0108.pdf.
  7. C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14, 880-882 (1989).
    [CrossRef] [PubMed]
  8. S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
    [CrossRef]
  9. W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
    [CrossRef]
  10. S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
    [CrossRef]
  11. J.-Y. Kim and S.-K. Han, “Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter: theory and experiment,” Opt. Commun. 261, 130-140 (2006).
    [CrossRef]
  12. H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
    [CrossRef]
  13. M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.
  14. R. Gutiérrez-Castrejón and M. Duelk, “Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications,” Comput. Phys. Commun. 174, 431-440 (2006).
    [CrossRef]
  15. R. Gutiérrez-Castrejón, M. Duelk, and P. Bernasconi, “A simulator for integrated optoelectronic devices,” in Proceedings of the Sixth International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2006), pp. 49-50.
  16. A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3 (5), 1190-1207 (1997).
    [CrossRef]
  17. R. Gutiérrez-Castrejón and M. Duelk, “Uni-directional time-domain bulk SOA simulator considering carrier-depletion by amplified spontaneous emission,” IEEE J. Quantum Electron. 42, 581-588 (2006).
    [CrossRef]
  18. M. J. Connelly, “Wide--band steady--state numerical model and parameter extraction of a tensile--strained bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 43, 47-56 (2007).
    [CrossRef]
  19. A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
    [CrossRef]
  20. T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24, 1499-1503(2006).
    [CrossRef]
  21. A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
    [CrossRef]

2008

J. D'Ambrosia, “The next generation of Ethernet,” IEEE Commun. Mag. 46(2), S8-S15 (2008).
[CrossRef]

2007

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6-9 (2007).
[CrossRef]

M. J. Connelly, “Wide--band steady--state numerical model and parameter extraction of a tensile--strained bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 43, 47-56 (2007).
[CrossRef]

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

2006

J.-Y. Kim and S.-K. Han, “Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter: theory and experiment,” Opt. Commun. 261, 130-140 (2006).
[CrossRef]

R. Gutiérrez-Castrejón and M. Duelk, “Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications,” Comput. Phys. Commun. 174, 431-440 (2006).
[CrossRef]

R. Gutiérrez-Castrejón and M. Duelk, “Uni-directional time-domain bulk SOA simulator considering carrier-depletion by amplified spontaneous emission,” IEEE J. Quantum Electron. 42, 581-588 (2006).
[CrossRef]

T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24, 1499-1503(2006).
[CrossRef]

2005

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

2003

A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
[CrossRef]

2001

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

1998

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

1997

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3 (5), 1190-1207 (1997).
[CrossRef]

1989

Akatsu, Y.

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

Andonovic, I.

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

Anslow, P.

C. Cole, P. Anslow, and J. King, “Update to adopted 100GE 40 km SMF PMD baseline,” presented at the IEEE P802.3ba Task Force Meeting, Denver, Colo., July 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_01_0708.pdf.

Bellemain, A.

Bernasconi, P.

R. Gutiérrez-Castrejón, M. Duelk, and P. Bernasconi, “A simulator for integrated optoelectronic devices,” in Proceedings of the Sixth International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2006), pp. 49-50.

Bogoni, A.

A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
[CrossRef]

Bononi, A.

A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
[CrossRef]

Brenot, R.

T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24, 1499-1503(2006).
[CrossRef]

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

Briant, T.

Chang, S. H.

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

Chung, H. S.

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

Cole, C.

C. Cole and T. Tsegaye, “100GE 40 km SMF technology limitation,” presented at the IEEE P802.3ba Task Force Meeting, Portland, Oreg., January 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_02_0108.pdf.

C. Cole, P. Anslow, and J. King, “Update to adopted 100GE 40 km SMF PMD baseline,” presented at the IEEE P802.3ba Task Force Meeting, Denver, Colo., July 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_01_0708.pdf.

Connelly, M. J.

M. J. Connelly, “Wide--band steady--state numerical model and parameter extraction of a tensile--strained bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 43, 47-56 (2007).
[CrossRef]

Conner, S.

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

Crottoni, A.

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

D'Ambrosia, J.

J. D'Ambrosia, “The next generation of Ethernet,” IEEE Commun. Mag. 46(2), S8-S15 (2008).
[CrossRef]

Danielsen, S. L.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Desurvire, E.

Deveaud, B.

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

Doussiere, P.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Duelk, M.

R. Gutiérrez-Castrejón and M. Duelk, “Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications,” Comput. Phys. Commun. 174, 431-440 (2006).
[CrossRef]

R. Gutiérrez-Castrejón and M. Duelk, “Uni-directional time-domain bulk SOA simulator considering carrier-depletion by amplified spontaneous emission,” IEEE J. Quantum Electron. 42, 581-588 (2006).
[CrossRef]

M. Duelk, “Next-generation 100 G Ethernet,” in 31st European Conference on Optical Communications (IEEE, 2005), Vol. 5, pp. 15-18.

R. Gutiérrez-Castrejón and M. Duelk, “Impact of the semiconductor optical pre-amplifier in the performance of the 100 GbE4×25 Gb/s40 km PHY under different transmitter conditions,” in Proceedings of the Asia Opto-Electronics Conference (AOE 2008) (IEEE, 2008), p. FG3.

R. Gutiérrez-Castrejón, M. Duelk, and P. Bernasconi, “A simulator for integrated optoelectronic devices,” in Proceedings of the Sixth International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2006), pp. 49-50.

Dupertuis, M.-A.

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

Endo, J.

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

Giles, C. R.

Grangier, P.

Gutiérrez-Castrejón, R.

R. Gutiérrez-Castrejón and M. Duelk, “Uni-directional time-domain bulk SOA simulator considering carrier-depletion by amplified spontaneous emission,” IEEE J. Quantum Electron. 42, 581-588 (2006).
[CrossRef]

R. Gutiérrez-Castrejón and M. Duelk, “Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications,” Comput. Phys. Commun. 174, 431-440 (2006).
[CrossRef]

R. Gutiérrez-Castrejón, M. Duelk, and P. Bernasconi, “A simulator for integrated optoelectronic devices,” in Proceedings of the Sixth International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2006), pp. 49-50.

R. Gutiérrez-Castrejón and M. Duelk, “Impact of the semiconductor optical pre-amplifier in the performance of the 100 GbE4×25 Gb/s40 km PHY under different transmitter conditions,” in Proceedings of the Asia Opto-Electronics Conference (AOE 2008) (IEEE, 2008), p. FG3.

Han, S.-K.

J.-Y. Kim and S.-K. Han, “Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter: theory and experiment,” Opt. Commun. 261, 130-140 (2006).
[CrossRef]

Hansen, P. B.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Ichioka, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

Idler, W.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Ikeda, H.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

Imai, Y.

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

Kelly, A. E.

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

Kim, J.-Y.

J.-Y. Kim and S.-K. Han, “Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter: theory and experiment,” Opt. Commun. 261, 130-140 (2006).
[CrossRef]

Kim, K.

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

Kimura, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

King, J.

C. Cole, P. Anslow, and J. King, “Update to adopted 100GE 40 km SMF PMD baseline,” presented at the IEEE P802.3ba Task Force Meeting, Denver, Colo., July 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_01_0708.pdf.

Lee, H. J.

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

McDonough, J.

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6-9 (2007).
[CrossRef]

Mecozzi, A.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3 (5), 1190-1207 (1997).
[CrossRef]

Michie, W. C.

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

Moreno, P.

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

Mørk, J.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3 (5), 1190-1207 (1997).
[CrossRef]

Nakamura, M.

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

Ohshima, T.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

Pommerau, F.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Poti, L.

A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
[CrossRef]

Salleras, F.

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

Schilling, M.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Simpson, J. R.

Stubkjaer, K. E.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Thedrez, B.

Tsegaye, T.

C. Cole and T. Tsegaye, “100GE 40 km SMF technology limitation,” presented at the IEEE P802.3ba Task Force Meeting, Portland, Oreg., January 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_02_0108.pdf.

Tsunotani, M.

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

Tualle-Brouri, R.

Umeda, Y.

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

Wünstel, K.

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

Comput. Phys. Commun.

R. Gutiérrez-Castrejón and M. Duelk, “Using LabVIEW for advanced nonlinear optoelectronic device simulations in high-speed optical communications,” Comput. Phys. Commun. 174, 431-440 (2006).
[CrossRef]

IEEE Commun. Mag.

J. D'Ambrosia, “The next generation of Ethernet,” IEEE Commun. Mag. 46(2), S8-S15 (2008).
[CrossRef]

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6-9 (2007).
[CrossRef]

IEEE J. Quantum Electron.

R. Gutiérrez-Castrejón and M. Duelk, “Uni-directional time-domain bulk SOA simulator considering carrier-depletion by amplified spontaneous emission,” IEEE J. Quantum Electron. 42, 581-588 (2006).
[CrossRef]

M. J. Connelly, “Wide--band steady--state numerical model and parameter extraction of a tensile--strained bulk semiconductor optical amplifier,” IEEE J. Quantum Electron. 43, 47-56 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3 (5), 1190-1207 (1997).
[CrossRef]

IEEE J. Solid-State Circuits

H. Ikeda, T. Ohshima, M. Tsunotani, T. Ichioka, and T. Kimura, “An auto-gain control transimpedance amplifier with low noise and wide input dynamic range for 10 Gb/s optical communication systems,” IEEE J. Solid-State Circuits 36, 1303-1308 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

S. H. Chang, H. S. Chung, H. J. Lee, and K. Kim, “Suppression of transient phenomena in hybrid Raman/EDF amplifier,” IEEE Photon. Technol. Lett. 17, 1004-1006 (2005).
[CrossRef]

S. L. Danielsen, P. B. Hansen, K. E. Stubkjaer, M. Schilling, K. Wünstel, W. Idler, P. Doussiere, and F. Pommerau, “All optical wavelength conversion schemes for increased input power dynamic range,” IEEE Photon. Technol. Lett. 10, 60-62 (1998).
[CrossRef]

A. Crottoni, F. Salleras, P. Moreno, M.-A. Dupertuis, B. Deveaud, and R. Brenot, “Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme,” IEEE Photon. Technol. Lett. 17, 977-979(2005).
[CrossRef]

A. Bogoni, L. Poti, and A. Bononi, “Accurate measurements of in-band FWM power in DWDM systems over nonzero dispersion fibers,” IEEE Photon. Technol. Lett. 15, 260-262(2003).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J.-Y. Kim and S.-K. Han, “Novel automatic control for the optimum optical gain and phase differences in SOA-MZI wavelength converter: theory and experiment,” Opt. Commun. 261, 130-140 (2006).
[CrossRef]

Opt. Eng.

W. C. Michie, S. Conner, A. E. Kelly, and I. Andonovic, “Automatic power control with electronic amplified spontaneous emission compensation,” Opt. Eng. 46, 080501 (2007).
[CrossRef]

Opt. Lett.

Other

M. Nakamura, Y. Imai, Y. Umeda, J. Endo, and Y. Akatsu, “A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system,” in Optical Fiber Communications Conference (Optical Society of America, 2005), Vol. 5, pages OFM6.1-3.

R. Gutiérrez-Castrejón, M. Duelk, and P. Bernasconi, “A simulator for integrated optoelectronic devices,” in Proceedings of the Sixth International Conference on Numerical Simulation of Optoelectronic Devices (IEEE, 2006), pp. 49-50.

M. Duelk, “Next-generation 100 G Ethernet,” in 31st European Conference on Optical Communications (IEEE, 2005), Vol. 5, pp. 15-18.

C. Cole, P. Anslow, and J. King, “Update to adopted 100GE 40 km SMF PMD baseline,” presented at the IEEE P802.3ba Task Force Meeting, Denver, Colo., July 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_01_0708.pdf.

R. Gutiérrez-Castrejón and M. Duelk, “Impact of the semiconductor optical pre-amplifier in the performance of the 100 GbE4×25 Gb/s40 km PHY under different transmitter conditions,” in Proceedings of the Asia Opto-Electronics Conference (AOE 2008) (IEEE, 2008), p. FG3.

C. Cole and T. Tsegaye, “100GE 40 km SMF technology limitation,” presented at the IEEE P802.3ba Task Force Meeting, Portland, Oreg., January 2008. Available at http://www.ieee802.org/3/ba/index.html IEEE P802.3ba Task Force Contribution cole_02_0108.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Setup for the 4 × 25 Gbit s / s optical link. Tx (Rx) represents electrical transmitter (receiver). The dotted lines indicate electrical connections. The elements that comprise the optical receiver are bounded by the dashed line.

Fig. 2
Fig. 2

BER performance of the OFE as a function of average input optical power. The sensitivity and overload points are highlighted. The horizontal line indicates the range of powers received by the photodiode in the 100 GbE link when the SOA is not present.

Fig. 3
Fig. 3

Simulated SSG and output saturation power as a function of injected current for a typical SOA. Data produced with the model reported in [17] fitted to experimental curves presented in [18].

Fig. 4
Fig. 4

Gain compression of the SOA as a function of output power for three values of the SSG: 23, 18, and 9 dB. The dashed lines show the 3 dB gain compression that corresponds to 11.33, 5.0, and 0.22 dBm, respectively.

Fig. 5
Fig. 5

BER performance of the optical receiver (i.e., SOA, DEMUX, and OFE) as a function of average input optical power for three SOA gain values. The horizontal line indicates the power range received by the SOA in the 100 GbE link.

Fig. 6
Fig. 6

Sensitivity and overload power of the optical receiver at a BER of 1 × 10 12 as a function of SOA SSG.

Fig. 7
Fig. 7

BER performance of the 100 GbE link as a function of fiber length for an EML output power of 0 dBm . Simulations carried out with an unamplified link (squares), using an SOA with a fixed gain of 18 dB (stars), using the AGC preamplified receiver with a target BER of 1 × 10 15 (triangles), and using the AGC preamplified receiver for the minimum BER. The dashed line indicates the error-free threshold.

Fig. 8
Fig. 8

BER performance of the 100 GbE link as a function of fiber length for an EML output power of + 5 dBm . Simulations carried out with an unamplified link (squares), using a SOA with a fixed gain of 18 dB (stars), using the AGC pre amplified receiver with a target BER of 1 × 10 15 (triangles) and using the AGC preamplified receiver for the minimum BER. The dashed line indicates the error-free threshold.

Fig. 9
Fig. 9

Calculated SOA SSG required to produce the AGC BER curve at 1 × 10 15 (triangles) and the AGC minimum BER curve (circles) shown in Fig. 7. An EML ouput power of 0 dBm was utilized.

Fig. 10
Fig. 10

Calculated SOA SSG required to produce the AGC BER curve at 1 × 10 15 (triangles) and the AGC minimum BER curve (circles) shown in Fig. 8. An EML ouput power of + 5 dBm was utilized.

Tables (1)

Tables Icon

Table 1 Parameter Values Used in the Simulations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2.4 × 10 11

Metrics