Abstract

By combination of two defect structures with positive and negative birefringence, we design a holey fiber with a beat length that is less sensitive to wavelength. The influence of different structural parameters on birefringence of holey fiber is calculated by the finite-difference beam propagation method. A stable beat length can be achieved at some given wavelength window by adjusting the parameters. An almost uniform beat length with a greater than 180nm bandwidth at 1310 and 1550nm wavelength windows is obtained, which is useful for the design and fabrication of fiber-optic wave plates with a wide band.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stenz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796-798 (2000).
    [CrossRef]
  2. J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
    [CrossRef]
  3. J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  4. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22 (13), 961-963(1997).
    [CrossRef] [PubMed]
  5. M. D. Nielson, J. R. Folkenberg, N. A. Mortensen, and A. Bjarklev, “Bandwidth comparison of photonic crystal fibers and conventional single-mode fibers,” Opt. Express 12, 430-435 (2004).
    [CrossRef]
  6. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1102 (1999).
    [CrossRef]
  7. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568-3573 (2003).
    [CrossRef] [PubMed]
  8. X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
    [CrossRef]
  9. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
    [CrossRef]
  10. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
    [CrossRef]
  11. A. Michie, J. Canning, K. Lyytikäinen, M. Åsland, and J. Digweed, “Temperature independent highly birefringent photonic crystal fiber,” Opt. Express 12, 5160-5165 (2004).
    [CrossRef] [PubMed]
  12. S. Kim, U. C. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039-6050 (2005).
    [CrossRef] [PubMed]
  13. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
    [CrossRef]
  14. G. R. Hardley, “Transparent boundary condition for the beam propagation method,” Quantum Electron. 28, 363 (1992).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

2007

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

2006

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

2005

X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
[CrossRef]

S. Kim, U. C. Paek, and K. Oh, “New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range,” Opt. Express 13, 6039-6050 (2005).
[CrossRef] [PubMed]

2004

2003

2000

1999

1998

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

1997

1993

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

1992

G. R. Hardley, “Transparent boundary condition for the beam propagation method,” Quantum Electron. 28, 363 (1992).
[CrossRef]

Birks, T. A.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Åsland, M.

Bennett, P. J.

Birks, T. A.

Bjarklev, A.

Broderick, N. G. R.

Canning, J.

Chen, D.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

Chu, P. L.

X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
[CrossRef]

Cregan, R. F.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

de Sandro, J. P.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

Digweed, J.

Ebendorff-Heidepriem, H.

Finazzi, V.

Folkenberg, J. R.

Frampton, K.

Gao, M.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

Hardley, G. R.

G. R. Hardley, “Transparent boundary condition for the beam propagation method,” Quantum Electron. 28, 363 (1992).
[CrossRef]

Hu, W.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

Jiang, C.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

Kim, S.

Knight, J. C.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22 (13), 961-963(1997).
[CrossRef] [PubMed]

Lyytikäinen, K.

Michie, A.

Monro, T. M.

Moore, R. C.

Mortensen, N. A.

Nielson, M. D.

Oh, K.

Paek, U. C.

Petropoulos, P.

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22 (13), 961-963(1997).
[CrossRef] [PubMed]

Sang, X.

X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
[CrossRef]

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

Stenz, A. J.

Wang, J.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

Windeler, R. S.

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

Yu, C..

X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
[CrossRef]

Electron. Lett.

J. C. KnightT. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

IEEE J. Quantum Electron.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Laser Technol.

J. Wang, C. Jiang, W. Hu, and M. Gao, “Modified design of photonic crystal fibers with flattened dispersion,” Opt. Laser Technol. 38, 169-172 (2006).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

X. Sang, P. L.Chu, and C.. Yu, “Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications,” Opt. Quantum Electron. 37 (10), 965-994(2005).
[CrossRef]

Quantum Electron.

G. R. Hardley, “Transparent boundary condition for the beam propagation method,” Quantum Electron. 28, 363 (1992).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section of birefringent holey fiber (a) Type-A with elliptic airholes and (b) Type-B with two large airholes adjacent to the core.

Fig. 2
Fig. 2

Dependence of modal birefringence on wavelength for Type-A holey fiber.

Fig. 3
Fig. 3

Dependence of modal birefringence on wavelength for Type-B holey fiber.

Fig. 4
Fig. 4

Cross section of Type-C holey fiber: a combination of Type-A and Type-B.

Fig. 5
Fig. 5

Dependence of modal birefringence on wavelength for Type-C holey fiber with Λ = 4.4 μ m , d x = 2.22 μ m , d y = 1.1 μ m , d 2 = 3 μ m . .

Fig. 6
Fig. 6

Dependence of modal birefringence on wavelength for Type-C holey fiber with different d y .

Fig. 7
Fig. 7

Dependence of modal birefringence on wavelength for Type-C holey fiber with different d 2 .

Fig. 8
Fig. 8

Retardation deviation of a QWP in wavelength windows of (a) 1310 and (b) 1550 nm.

Fig. 9
Fig. 9

Normalized deviation of beat length at different error rates of (a)  d y and (b)  d 2 in a wavelength window normalized by 1310 nm .

Tables (2)

Tables Icon

Table 1 Beat Length of Type-C Optimized Holey Fiber

Tables Icon

Table 2 Beat Length at 1310 nm and Operating Bandwidth for a Holey Fiber with Errors of d y and d 2

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 E x + n 2 k 2 E x = x ( ln n 2 x E x ) x ( ln n 2 y E y ) ,
2 E y + n 2 k 2 E y = y ( ln n 2 x E x ) y ( ln n 2 y E y ) ,
2 H x + n 2 k 2 H x = 1 n 2 n 2 y ( H x y H y x ) ,
2 H y + n 2 k 2 H y = 1 n 2 n 2 x ( H y x H x y ) ,
E t = E ^ t exp ( j n 0 k z ) ,
H t = H ^ t exp ( j n 0 k z ) ,
j ( E ^ x / z ) = A x x E ^ x + A x y E ^ y ,
j ( E ^ y / z ) = A y y E ^ y + A y x E ^ x ,
j ( H ^ x / z ) = B x x H ^ x + B x y H ^ y ,
j ( H ^ y / z ) = B y y H ^ y + B y x H ^ x ,
B = n y n x = β y β x 2 π / λ ,
L B = λ | B | = 2 π | β y β x | ,
d y
d 2
Λ = 4.4 μ m , d x = 2.22 μ m , d y = 1.1 μ m , d 2 = 3 μ m .

Metrics