Abstract

The subwavelength structures formed by data tracks in an optical disk are applied to improve the light-trapping effect for thin-film amorphous silicon (a-Si) solar cell applications. An antireflection coating (ARC) consisting of at least two dielectric layers (SiO2 and ZnSSiO2) is designed for the top planar surface of the disk. The a-Si thin-film solar cell layer is deposited below the bottom surface of the disk. Finally, a reflective metal coating is attached to the a-Si layer to fully reflect the incident light and extend the round-trip light path. With the proposed configuration, the reflectance and absorptance can be effectively decreased and enhanced by more than 10% compared with those without ARC and structured surfaces.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Green and P. Campbell, “Light trapping properties of pyramidally textured and grooved surfaces,” Conference Record, 19th IEEE Photovoltaic Specialists Conference (IEEE, 1987), pp. 912-917.
  2. T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.
  3. S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
    [CrossRef]
  4. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
    [CrossRef]
  5. M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
    [CrossRef]
  6. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
    [CrossRef]
  7. S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
    [CrossRef]
  8. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238-15248 (2008).
    [CrossRef] [PubMed]
  9. T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000).
    [CrossRef]
  10. E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
    [CrossRef]
  11. T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
    [CrossRef]
  12. Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
    [CrossRef]
  13. A. B. Marchant, Optical Recording: a Technical Overview (Addison-Wesley, 1990).
  14. E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
    [CrossRef]
  15. Product of Software Spectra, Incorporated, http://www.sspectra.com.
  16. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  18. Product of Grating Solver Development Company, http://www.gsolver.com.

2008

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238-15248 (2008).
[CrossRef] [PubMed]

2007

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

2006

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
[CrossRef]

2005

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

2002

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

2001

S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
[CrossRef]

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

2000

T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000).
[CrossRef]

1982

1981

Abe, S.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Barnett, A.

Campbell, P.

A. M. Green and P. Campbell, “Light trapping properties of pyramidally textured and grooved surfaces,” Conference Record, 19th IEEE Photovoltaic Specialists Conference (IEEE, 1987), pp. 912-917.

Chen, C.

Creazzo, T.

Duan, X.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Feng, N. N.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Fuyuki, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
[CrossRef]

Gaylord, T. K.

Gee, J. M.

S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
[CrossRef]

Glatthaar, M.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Gombert, A.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Green, A. M.

A. M. Green and P. Campbell, “Light trapping properties of pyramidally textured and grooved surfaces,” Conference Record, 19th IEEE Photovoltaic Specialists Conference (IEEE, 1987), pp. 912-917.

Hayashi, K.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Hayashida, N.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Higuchi, T.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000).
[CrossRef]

Hirata, H.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Hisada, K.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Hong, C. Y.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Honsberg, C.

Horikawa, K.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Hosoda, Y.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Iida, T.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Imai, T.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Inoue, A.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Inoue, H.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Ito, E.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Kato, M.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Kato, T.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Kim, D. Y.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, J. Jo. J.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, S. S.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kimerling, L. C.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Komaki, T.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Koyanagi, H.

T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000).
[CrossRef]

Kuriyama, K.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Kwon, S. S.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Lee, T.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Lewer, P.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Liu, J.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Machida, T.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Marchant, A. B.

A. B. Marchant, Optical Recording: a Technical Overview (Addison-Wesley, 1990).

Michel, J.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Moharam, M. G.

Muller, C.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Muramatsu, E.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Mutitu, J. G.

Na, S. I.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Nakajima, K.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Nammori, T.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Niggemann, M.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Nishikiori, K.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Nunoi, T.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Ohno, E.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Okamoto, K.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Prather, D. W.

Ruby, D. S.

S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
[CrossRef]

Shi, S.

Shibuya, N.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Shida, N.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Shingai, H.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Shirota, A.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Takeda, Y.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Tanaka, S.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Taniguchi, S.

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

Tomekawa, Y.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

Tsuji, T.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

Uraoka, Y.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
[CrossRef]

Utsunomiya, H.

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Wagner, J.

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Yagi, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
[CrossRef]

Yokogawa, F.

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Zaida, S. H.

S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
[CrossRef]

Zeng, L.

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

Appl. Phys. Lett.

S. I. Na, S. S. Kim, S. S. Kwon, J. .Jo. J. Kim, T. Lee, and D. Y. Kim, “Surface relief grating on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

IEEE Trans. Electron. Devices

S. H. Zaida, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon solar cells,” IEEE Trans. Electron. Devices 48, 1200-1206 (2001).
[CrossRef]

N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Trans. Electron. Devices 54, 1926-1933 (2007).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

E. Ohno, K. Hisada, E. Ito, Y. Tomekawa, K. Nishikiori, K. Hayashi, and S. Abe, “Manufacturing process for low cost dual layer blu-ray disc read-only memory media based on the all spin method,” Jpn. J. Appl. Phys. 47, 5509-5515 (2008).
[CrossRef]

T. Higuchi and H. Koyanagi, “27.4 Gbyte read-only dual-layer disc for blue lasers,” Jpn. J. Appl. Phys. 39, 933-936 (2000).
[CrossRef]

E. Muramatsu, A. Shirota, K. Horikawa, M. Kato, S. Taniguchi, and A. Inoue, “Physical characteristics and the format of digital versatile disc-recordable,” Jpn. J. Appl. Phys. 40, 1798-1802 (2001).
[CrossRef]

T. Kato, H. Hirata, T. Komaki, H. Inoue, H. Shingai, N. Hayashida, and H. Utsunomiya, “The phase change optical disc with the data recording rate of 140 Mbps,” Jpn. J. Appl. Phys. 41, 1664-1667 (2002).
[CrossRef]

Y. Hosoda, T. Higuchi, N. Shida, T. Imai, T. Iida, K. Kuriyama, and F. Yokogawa, “BD-type write-once disk with pollutant-free material and starch substrate,” Jpn. J. Appl. Phys. 44, 3587-3590 (2005).
[CrossRef]

Opt. Express

Sol. Energy Mater. Sol. Cells

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647-2656 (2006).
[CrossRef]

Thin Solid Films

M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films 511-512, 628-633 (2006).
[CrossRef]

Other

A. M. Green and P. Campbell, “Light trapping properties of pyramidally textured and grooved surfaces,” Conference Record, 19th IEEE Photovoltaic Specialists Conference (IEEE, 1987), pp. 912-917.

T. Machida, K. Nakajima, Y. Takeda, S. Tanaka, N. Shibuya, K. Okamoto, T. Nammori, T. Nunoi, and T. Tsuji, “Efficiency improvement in polycrystalline silicon solar cell with grooved surface,” Conference Record, 22nd IEEE Photovoltaic Specialists Conference (2) (IEEE, 1992),, pp. 1033-1034.

A. B. Marchant, Optical Recording: a Technical Overview (Addison-Wesley, 1990).

Product of Software Spectra, Incorporated, http://www.sspectra.com.

Product of Grating Solver Development Company, http://www.gsolver.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the recording surface in an optical disk.

Fig. 2
Fig. 2

Proposed configuration of a solar cell using the structured optical disk. The up–down direction is opposite that of Fig. 1.

Fig. 3
Fig. 3

Simulation methods of the reflectance by two steps: (a) interface 1 between the planar disk surface and the ARC and (b) interface 2 between the subwavelength structures and the a-Si layer.

Fig. 4
Fig. 4

Mechanism of light trapping that is derived from the diffraction of subwavelength structures.

Fig. 5
Fig. 5

Simulated efficiencies for the top surface of the disk substrate that corresponds to a planar plate without (w/o) structures and ARC and a structured disk with (w) ARC.

Fig. 6
Fig. 6

Simulated efficiencies for the bottom surface of the disk substrate coated with an a-Si layer corresponding to (a) different groove depths and (b) different duty cycles.

Fig. 7
Fig. 7

Simulated efficiencies corresponding to (w/o) structures and ARC, (w) ARC but (w/o) structures, and (w) structures and ARC.

Fig. 8
Fig. 8

Device fabrication flow for the proposed device.

Fig. 9
Fig. 9

Experimental setup for measurement of reflectance.

Fig. 10
Fig. 10

Experimental efficiencies for the top surface of the disk substrate corresponding to a planar plate (w/o) structures and ARC and a structured disk (w) ARC.

Fig. 11
Fig. 11

Experimental efficiencies for the bottom surface of the disk substrate coated with an a-Si layer corresponding to (a) different groove depths and (b) different duty cycles.

Fig. 12
Fig. 12

Experimental efficiencies corresponding to (w/o) structures and ARC, (w) ARC but (w/o) structures, (w) structures and ARC, and (w) structures, ARC, and metal film.

Tables (3)

Tables Icon

Table 1 Physical Specifications of All Types of Existing Commercial Optical Disk Formats

Tables Icon

Table 2 Process Parameters of Thin-Film Deposition for All Layers

Tables Icon

Table 3 Average Reflectance for Various Cell Configurations a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S i O 2
R = R 1 + R 2 ( 1 R 1 ) 2 + R 1 R 2 2 ( 1 R 1 ) 2 + .

Metrics