Abstract

We investigate the possibility of preparation of laser-induced dichroism in composite glasses with a high concentration of silver nanoparticles. A detailed analysis based on the Maxwell-Garnett theory and experimental results shows that particles at different volume fractions react differently to the same laser irradiation parameters. Based on these findings, we demonstrate that a well-defined sequence of multiple irradiation and intermediate annealing can maximize the particles’ aspect ratio and avoid unwanted partial destruction. The proposed irradiation technique permits production of micropolarizing structures with high polarization contrast in the visible and near-IR regions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  3. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33, 2235-2249 (1998).
    [CrossRef]
  4. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
    [CrossRef]
  5. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
    [CrossRef]
  6. G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
    [CrossRef]
  7. A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
    [CrossRef]
  8. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
    [CrossRef]
  9. A. V. Podlipensky, “Laser assisted modification of optical and structural properties of composite glass with silver nanoparticles,” Ph.D. dissertation (Martin-Luther Universität Halle-Wittenberg, 2005). http://sundoc.bibliothek.uni-halle.de/diss-online/05/05H084/index.htm.
  10. A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215-3217(2007).
    [CrossRef] [PubMed]
  11. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
    [CrossRef]
  12. A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
    [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  14. J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. Theory,” Phys. Rev. B 4, 271-280 (1971).
    [CrossRef]
  15. G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
    [CrossRef]
  16. V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
    [CrossRef]
  17. V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
    [CrossRef]
  18. B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
    [CrossRef]
  19. K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
    [CrossRef]
  20. H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
    [CrossRef]
  21. J. I. Gittleman and B. Abeles, “Comparison of effective medium and Maxwell-Garnett predictions for dielectric-constants of granular metals,” Phys. Rev. B 15, 3273-3275(1977).
    [CrossRef]

2009 (1)

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

2008 (1)

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

2007 (1)

2005 (2)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

2004 (1)

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

2001 (2)

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

1999 (2)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33, 2235-2249 (1998).
[CrossRef]

1997 (1)

B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
[CrossRef]

1996 (1)

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

1991 (2)

K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
[CrossRef]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

1977 (1)

J. I. Gittleman and B. Abeles, “Comparison of effective medium and Maxwell-Garnett predictions for dielectric-constants of granular metals,” Phys. Rev. B 15, 3273-3275(1977).
[CrossRef]

1971 (1)

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. Theory,” Phys. Rev. B 4, 271-280 (1971).
[CrossRef]

Abdolvand, A.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

Abeles, B.

J. I. Gittleman and B. Abeles, “Comparison of effective medium and Maxwell-Garnett predictions for dielectric-constants of granular metals,” Phys. Rev. B 15, 3273-3275(1977).
[CrossRef]

Armstrong, R. L.

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Ausseneg, F. G.

B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
[CrossRef]

Berg, K. J.

K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
[CrossRef]

Berg, K.-J.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Berger, A.

H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33, 2235-2249 (1998).
[CrossRef]

Drost, W. G.

H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

George, T. F.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Gittleman, J. I.

J. I. Gittleman and B. Abeles, “Comparison of effective medium and Maxwell-Garnett predictions for dielectric-constants of granular metals,” Phys. Rev. B 15, 3273-3275(1977).
[CrossRef]

Graener, H.

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215-3217(2007).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Grebenev, V.

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

Hofmeister, H.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Jin, P.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

Kaempfe, M.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Kim, W.

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
[CrossRef]

Leitner, A.

B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
[CrossRef]

Lemon, J. R.

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. Theory,” Phys. Rev. B 4, 271-280 (1971).
[CrossRef]

Markel, V. A.

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Marton, J. P.

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. Theory,” Phys. Rev. B 4, 271-280 (1971).
[CrossRef]

Muratov, L. S.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Nakao, S.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

Podlipensky, A.

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

Podlipensky, A. V.

A. V. Podlipensky, “Laser assisted modification of optical and structural properties of composite glass with silver nanoparticles,” Ph.D. dissertation (Martin-Luther Universität Halle-Wittenberg, 2005). http://sundoc.bibliothek.uni-halle.de/diss-online/05/05H084/index.htm.

Rainer, T.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Seifert, G.

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215-3217(2007).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Shalaev, V.

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Stalmashonak, A.

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

A. Stalmashonak, G. Seifert, and H. Graener, “Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Opt. Lett. 32, 3215-3217(2007).
[CrossRef] [PubMed]

Stechel, E. B.

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Stockman, M. I.

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

Tazawa, M.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

Unal, A. A.

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Xu, G.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

Appl. Phys. A (2)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys. A 80, 1647-1652 (2005).
[CrossRef]

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys. A 80, 1535-1540 (2005).
[CrossRef]

Appl. Phys. B (3)

B. Lamprecht, A. Leitner, and F. G. Ausseneg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B 64, 269-272 (1997).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B 94, 459-465 (2009).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Production of “dichroitic” diffraction gratings in glasses containing silver nanoparticles via particle deformation with ultrashort laser pulses,” Appl. Phys. B 73, 355-359 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74, 1200-1202 (1999).
[CrossRef]

Eur. Phys. J. D (1)

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D 16, 237-240 (2001).
[CrossRef]

J. Lumin. (1)

A. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, “Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” J. Lumin. 109, 135-142 (2004).
[CrossRef]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33, 2235-2249 (1998).
[CrossRef]

Nanostruct. Mater. (1)

H. Hofmeister, W. G. Drost, and A. Berger, “Oriented prolate silver particles in glass-Characteristics of novel dichroic polarizers,” Nanostruct. Mater. 12, 207-210 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (4)

J. I. Gittleman and B. Abeles, “Comparison of effective medium and Maxwell-Garnett predictions for dielectric-constants of granular metals,” Phys. Rev. B 15, 3273-3275(1977).
[CrossRef]

J. P. Marton and J. R. Lemon, “Optical properties of aggregated metal systems. I. Theory,” Phys. Rev. B 4, 271-280 (1971).
[CrossRef]

V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical-simulation of optical-properties of fractal clusters,” Phys. Rev. B 43, 8183-8195 (1991).
[CrossRef]

V. A. Markel, V. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425-2436 (1996).
[CrossRef]

Proc. SPIE (1)

A. Stalmashonak, A. A. Unal, G. Seifert, and H. Graener, “Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass,” Proc. SPIE 7033, 70331Z(2008).
[CrossRef]

Z. Phys. D (1)

K. J. Berg, A. Berger, and H. Hofmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20, 309-311 (1991).
[CrossRef]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

A. V. Podlipensky, “Laser assisted modification of optical and structural properties of composite glass with silver nanoparticles,” Ph.D. dissertation (Martin-Luther Universität Halle-Wittenberg, 2005). http://sundoc.bibliothek.uni-halle.de/diss-online/05/05H084/index.htm.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Absorption cross section, (b) dispersion, and (c) reflection spectra of composite glass containing Ag NPs calculated according to the Maxwell-Garnett theory.

Fig. 2
Fig. 2

(a) Transmission electron microscope (TEM) picture of typical spherical Ag NPs in nanocomposite glass; (b) SEM picture of the cross section of a glass sample containing spherical Ag NPs; (c) SEM pictures of etched samples [volume fill factor: (i) 0.01; (ii) 0.006; (iii) 0.004; (iv) 0.001].

Fig. 3
Fig. 3

Transmission spectra of samples with spherical Ag NPs after a different etching time in 12% HF acid. Lettering of the spectra is according to the SEM pictures shown in Fig. 2c. The samples with a lower fill factor have higher transmission.

Fig. 4
Fig. 4

Polarized transmission spectra of irradiated samples. The spectra were measured from the same irradiated area: solid curves, directly after irradiation; dashed curves, after 10 s of etching.

Fig. 5
Fig. 5

(a) SP band positions and P-polarization band integrals of irradiated samples measured after different etching times; (b) values of the sample transmission minima from a nonirradiated area after every etching.

Fig. 6
Fig. 6

(a) Central wavelengths of polarized SP bands and P-polarization band integrals for six samples having different fill factors and irradiated with the same laser parameters; (b) values of the sample transmission minima from nonirradiated areas.

Fig. 7
Fig. 7

Polarized transmission spectra of an irradiated sample having a high fill factor: solid curves, measurement results after first irradiation; dashed curves, measurement results after the sixth irradiation.

Fig. 8
Fig. 8

Polarized transmission spectra of a sample having a high fill factor subsequently irradiated by pulses at 400 and 550 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Re [ ε i ( ω SP ) ] = 2 ε h .
p ( ω ) = 4 π ε 0 R 3 ε i ( ω ) ε h ε i ( ω ) + 2 ε h E 0 ( ω ) ,
ε eff ( ω ) = ε h ( ε i ( ω ) + 2 ε h ) + 2 f ( ε i ( ω ) ε h ) ( ε i ( ω ) + 2 ε h ) f ( ε i ( ω ) ε h ) .
ε i ( ω ) = ε b + 1 ω p 2 ω 2 + i γ ω ,
ω p = N e 2 m ε 0 .
n ( ω ) = n + i n = ε eff ( ω ) .
α = 2 ω c Im ε eff ( ω ) ,
n ( ω ) = Re ε eff ( ω ) ,
R ( ω ) = | n ( ω ) 1 n ( ω ) + 1 | 2 ,

Metrics