Abstract

We fabricated vertical cavity surface emitting lasers (VCSELs) and resonant-cavity-enhanced photodetectors (RCE-PDs) with GaAs/AlGaAs distributed Bragg reflectors (DBRs), operating at λ980nm, based on an intracavity-contacted structure. The top-DBR mesa diameter of the VCSELs was optimized to 18μm in terms of slope efficiency, differential series resistance, and 3dB bandwidth. For VCSELs with an oxide aperture of 4.5μm and a top-DBR mesa diameter of 18μm, the threshold current was about 1.2mA, exhibiting maximum output power of 3.49mW (at 20°C) with good uniformity. The effect of the overetching in the outermost layer of RCE-PDs on the device performance was also investigated. For RCE-PDs based on the VCSEL structure, a peak responsivity of 0.44A/W (at λ979.7nm) with a spectral width of 3nm and a dark current of 68pA under a bias voltage of 5V at 20°C was obtained. The maximum 3dB bandwidths of 11.5GHz with a modulation current efficiency factor of 5.6GHz/mA1/2 at 7mA and 9GHz at 7V were achieved for VCSELs and RCE-PDs, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000).
    [CrossRef]
  2. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
    [CrossRef]
  3. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).
  4. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  5. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
    [CrossRef]
  6. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritters, J. Jewell, L. A. Graham, K. Schrödinger, A. Schild, and H. Rein, “120 Gb/s VCSEL-based parallel-optical interconnect and custom 120 Gb/s testing station,” J. Lightwave Technol. 22, 2200-2212 (2004).
    [CrossRef]
  7. R. Szweda, “VCSEL applications diversify as technology matures,” III-V Rev. 19, 34-38 (2006).
  8. I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006).
    [CrossRef]
  9. A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
    [CrossRef]
  10. Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
    [CrossRef]
  11. D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
    [CrossRef]
  12. T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
    [CrossRef]
  13. J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
    [CrossRef]
  14. A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
    [CrossRef]
  15. Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
    [CrossRef]
  16. K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
    [CrossRef]
  17. Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
    [CrossRef]
  18. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  19. M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
    [CrossRef]
  20. M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
    [CrossRef]

2007

K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
[CrossRef]

2006

R. Szweda, “VCSEL applications diversify as technology matures,” III-V Rev. 19, 34-38 (2006).

I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

2005

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

2004

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritters, J. Jewell, L. A. Graham, K. Schrödinger, A. Schild, and H. Rein, “120 Gb/s VCSEL-based parallel-optical interconnect and custom 120 Gb/s testing station,” J. Lightwave Technol. 22, 2200-2212 (2004).
[CrossRef]

2001

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

2000

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000).
[CrossRef]

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

1999

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

1997

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

1994

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

Ahadian, J. F.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Alduino, A.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Alduino, A. C.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Allerman, A. A.

Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

Andersson, T. G.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Baks, C.

Barkai, A.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Barnett, B.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Benner, A. F.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

Braunisch, H.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Chang, K. S.

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
[CrossRef]

Cheng, J.

Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Chirovsky, L. M. F.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Choy, H. K. H.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Christensen, D. H.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Chung, I.

I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006).
[CrossRef]

Cohen, O.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Cohen, R.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Coldren, L. A.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cunningham, J. E.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Dosunmu, O.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Ebeling, K. J.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Fathpour, S.

Fonstad, C. G.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Ghisoni, M.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Gokkavas, M.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Graham, L. A.

Hains, C. P.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Hart, L.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Haymes, C.

Heck, J.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Hegblom, E. R.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

Hobson, W. S.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

Izhaky, N.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Jäger, R.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Jalali, B.

Jewell, J.

John, R.

Kash, J. A.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

King, R.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Knodel, T.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Ko, J.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

Koehl, S.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Kucharski, D.

Kuchta, D. M.

Kwark, Y. H.

Larsson, A.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Lee, Y. T.

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
[CrossRef]

I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006).
[CrossRef]

Liu, A.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Lopata, J.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Louderback, D. A.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

Lu, D.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Lullo, G.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Luong, S. Q.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000).
[CrossRef]

Mirin, R. P.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Mohammed, E.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Mooney, R.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Morse, M. T.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Na, B. H.

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

Nakagawa, S.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

Ozbay, E.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Pan, J. L.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Paniccia, M. J.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Pepeljugoski, P.

Peters, F. H.

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

Ram, R. J.

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

Rein, H.

Ritter, M. B.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

Ritters, M.

Rogers, D.

Rozier, R.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Rubin, D.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Sarid, G.

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

Schaub, J.

Schild, A.

Schrödinger, K.

Schuster, C.

Scott, J. W.

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

Shan, L.

Shin, J.

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

Sjolund, O.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Sjölund, O.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

Song, Y. M.

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
[CrossRef]

Szweda, R.

R. Szweda, “VCSEL applications diversify as technology matures,” III-V Rev. 19, 34-38 (2006).

Thibeault, B. J.

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

Thomas, T.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Thordsson, J.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Ulu, G.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Uulu, M. S.

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

Vandentop, G.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Wang, S. M.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

Young, D. B.

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

Young, I.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

Yu, J. S.

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

Zhou, Y.

Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Appl. Phys. B

K. S. Chang, Y. M. Song, and Y. T. Lee, “Stable single-mode operation of VCSELs with a mode selective aperture,” Appl. Phys. B 89, 231-234 (2007).
[CrossRef]

IBM J. Res. Develop.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49, 755-776(2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ghisoni, O. Sjolund, A. Larsson, S. M. Wang, J. Thordsson, T. G. Andersson, and L. Hart, “A comparative study of strain relaxation effects on the performance of InGaAs quantum well based on heterojunction phototransistors,” IEEE J. Sel. Top. Quantum Electron. 3, 768-779 (1997).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

D. A. Louderback, O. Sjölund, E. R. Hegblom, S. Nakagawa, J. Ko, and L. A. Coldren, “Modulation and free-space link characteristics of monolithically integrated vertical-cavity lasers and photodetectors with microlenses,” IEEE J. Sel. Topics Quantum Electron. 5, 157-165 (1999).
[CrossRef]

N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, and M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Topics Quantum Electron. 12, 1688-1698 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

I. Chung and Y. T. Lee, “A method to tune the cavity-mode wavelength of resonant cavity-enhanced photodetectors for bidirectional optical interconnects,” IEEE Photon. Technol. Lett. 18, 46-48 (2006).
[CrossRef]

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photon. Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Y. Zhou, J. Cheng, and A. A. Allerman, “High-speed wavelength-division multiplexing and demultiplexing using monolithic quasiplanar VCSEL and resonant photodetector array with strained InGaAs quantum wells,” IEEE Photon. Technol. Lett. 12, 122-124 (2000).
[CrossRef]

T. Knodel, H. K. H. Choy, J. L. Pan, R. King, R. Jäger, G. Lullo, J. F. Ahadian, R. J. Ram, C. G. Fonstad Jr., and K. J. Ebeling, “RCE photodetectors based on VCSEL structure,” IEEE Photon. Technol. Lett. 11, 1289-1291 (1999).
[CrossRef]

J. W. Scott, B. J. Thibeault, D. B. Young, L. A. Coldren, and F. H. Peters, “High efficiency submilliamp vertical cavity lasers with intracavity contacts,” IEEE Photon. Technol. Lett. 6, 678-680 (1994).
[CrossRef]

A. V. Krishnamoorthy, L. M. F. Chirovsky, W. S. Hobson, J. Lopata, J. Shin, R. Rozier, and J. E. Cunningham, “Small-signal characteristics of bottom-emitting intracavity contacted VCSEL's,” IEEE Photon. Technol. Lett. 12, 609-611 (2000).
[CrossRef]

M. Gokkavas, O. Dosunmu, M. S. Uulu, G. Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay, “High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications,” IEEE Photon. Technol. Lett. 13, 1349-1351 (2001).
[CrossRef]

III-V Rev.

R. Szweda, “VCSEL applications diversify as technology matures,” III-V Rev. 19, 34-38 (2006).

Intel Technol. J.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115-128 (2004).

J. Lightwave Technol.

Phys. Status Solidi A

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Low thermal resistance, high-speed 980 nm asymmetric intracavity-contacted oxide-aperture VCSELs,” Phys. Status Solidi A doi: 10.1002/pssa.200824458 (published online 22 April 2009).
[CrossRef]

Proc. IEEE

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000).
[CrossRef]

Thin Solid Films

Y. M. Song, K. S. Chang, B. H. Na, J. S. Yu, and Y. T. Lee, “Precise etch-depth control of microlens-integrated intracavity-contacted vertical-cavity surface-emitting lasers by in situ laser reflectometry and reflectivity modeling,” Thin Solid Films doi: 10.1016/ j.tsf.2009.03.198 (accepted 25 March 2009, in press).
[CrossRef]

Other

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustrations of (a) intracavity-contacted VCSELs with an oxide aperture and (b) intracavity-contacted RCE-PDs from the same epitaxial wafer. A scanning electron microscope image of the grown epitaxial layers is also shown in (c).

Fig. 2
Fig. 2

(a) Measured reflectance and PL spectrum and (b)  uniformity of the FP mode wavelength for the grown epitaxial VCSEL layers with 30.5 and 22 pairs of Ga As / Al 0.88 Ga 0.12 As on 5.08 cm GaAs wafer at room temperature.

Fig. 3
Fig. 3

(a) Slope efficiency and differential series resistance of the fabricated VCSELs with D a = 4.5 μm as a function of top-DBR mesa diameter at 20 ° C and (b) CW L–I–V curves at 20 ° C of the 15 fabricated VCSELs with D a = 4.5 μm and D m = 18 μm . The insets show the light emission spectrum and microscope image of a fabricated device.

Fig. 4
Fig. 4

(a) Small signal response as a function of frequency and (b)  3 dB bandwidth as a function of [ I I th ] 1 / 2 of the VCSEL with D a = 4.5 μm and D m = 18 μm at different injection currents. The inset of (b) shows the maximum 3 dB bandwidth of the fabricated VCSELs with D a = 4.5 μm versus top-DBR mesa diameter. The operating temperature is 20 ° C .

Fig. 5
Fig. 5

(a) Measured and simulated quantum efficiency of symmetric intracavity-contacted RCE-PDs as a function of wavelength for the overetched thicknesses of the outermost layers of 15 nm and 50 nm at 20 ° C and (b)  measured peak wavelength and maximum quantum efficiency as a function of overetched thickness of the outermost layer together with simulated results.

Fig. 6
Fig. 6

(a) Measured responsivity as a function of wavelength under a bias voltage of 5 V and (b)  measured peak responsivity as a function of bias voltage for the fabricated RCE-PD with D m = 18 μm . The temperature is 20 ° C . The inset of (a) shows the dark current as a function of reverse bias voltage.

Fig. 7
Fig. 7

Frequency response as a function of frequency under a bias voltage of 5 V at 20 ° C for the fabricated RCE-PD with D m = 18 μm . The inset shows the 3 dB bandwidth as a function of photocurrent at bias voltage of 5 V and 7 V .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f 3 dB 1.55 2 π λ v g a h c V a α i + α m α m P 0 ,

Metrics