Abstract

Phase-shifting profilometry requires projection of sinusoidal fringes on a 3D object. We analyze the visibility and frequency content of fringes created by a sinusoidal phase grating at coherent illumination. We derive an expression for the intensity of fringes in the Fresnel zone and measure their visibility and frequency content for a grating that has been interferometrically recorded on a holographic plate. Both evaluation of the systematic errors due to the presence of higher harmonics by simulation of a profilometric measurement and measurement of 3D coordinates of test objects confirm the good performance of the sinusoidal phase grating as a projective element. In addition, we prove theoretically that in comparison with a sinusoidal amplitude grating this grating produces better quality of fringes in the near-infrared region. Sinusoidal phase gratings are fabricated easily, and their implementation in fringe projection profilometry facilitates construction of portable, small size, and low-cost devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription