Abstract

We have designed and built an instrument having the capability to measure and display spectra at multiple ranges near simultaneously in real time. An excitation laser beam is oriented parallel to and offset from the axis of the light collection optics. The image of the laser beam is then displaced with range. Multiple optical fibers collect the displaced images at different ranges. The output ends of these fibers are positioned vertically along the input slit of a spectrometer that disperses the light from each fiber along different rows of the spectrometer’s two-dimensional detector array. The detector array rows then give an immediate visual comparison of spectra at different ranges. A small prototype of this system covering a range from 3 to 13 m has been built. It has been successfully tested using containers holding two distinct fluorescent dyes. Numerical simulations indicate that the technique can be extended to longer-range systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
    [CrossRef]
  2. G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
    [CrossRef]
  3. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
    [CrossRef] [PubMed]
  4. M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
    [CrossRef]
  5. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
    [CrossRef]
  6. S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).
  7. P. Weibring, T. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111-6120(2001).
    [CrossRef]
  8. J. E. Carranza, E. Gibb, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6016-6021 (2003).
    [CrossRef] [PubMed]
  9. J. E. Barnes, N. C. Parikh Sharma, and T. B. Kaplan, “Atmospheric aerosol profiling with a bistatic imaging lidar system,” Appl. Opt. 46, 2922-2929 (2007).
    [CrossRef] [PubMed]
  10. Schott North America Incorporated, 122 Charlton Street, Southbridge, Mass. 01550, USA; http://www.us.schott.com/fiberoptics/english/download/clad_rods.pdf (2008).
  11. D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695-1703(1970).
  12. A. E. Siegman, Lasers (University Science Books, 1986).
  13. B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
    [CrossRef]
  14. K. Suzuki, “Gauss lens with image stabilizing function,” U.S. patent 5,781,340 (14 July 1998).

2007

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

J. E. Barnes, N. C. Parikh Sharma, and T. B. Kaplan, “Atmospheric aerosol profiling with a bistatic imaging lidar system,” Appl. Opt. 46, 2922-2929 (2007).
[CrossRef] [PubMed]

2005

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

2003

2001

1999

B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
[CrossRef]

1996

G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
[CrossRef]

1981

1970

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695-1703(1970).

Barnes, J. E.

Carranza, J. E.

Cecchi, G.

Chen, T.

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

Chio, C. H.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

Edner, H.

Gibb, E.

Guenther, G.

G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
[CrossRef]

Hahn, D. W.

Johansson, T.

Kaplan, T. B.

Klett, J. D.

Larocque, P. E.

G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
[CrossRef]

Lentz, R. C. F.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).

Lienert, B.

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

Lienert, B. R.

B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
[CrossRef]

Lucey, P. G.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).

Madey, J. M. J.

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

Marcuse, D.

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695-1703(1970).

Misra, A. K.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).

Nehrir, A. R.

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

Obland, M. D.

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

Pantani, L.

Parikh Sharma, N. C.

Porter, J. N.

B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
[CrossRef]

Price, F.

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

Raimondi, V.

Repasky, K. S.

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

Sharma, S. K.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
[CrossRef]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).

Shaw, J. A.

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Smith, B. W.

Sundnér, B.

Suzuki, K.

K. Suzuki, “Gauss lens with image stabilizing function,” U.S. patent 5,781,340 (14 July 1998).

Svanberg, S.

Thomas, R. W. L.

G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
[CrossRef]

Weibring, P.

Winefordner, J. D.

Appl. Opt.

Bell Syst. Tech. J.

D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695-1703(1970).

Mar. Geodesy

B. R. Lienert, J. N. Porter, and S. K. Sharma, “Real time analysis and display of scanning lidar scattering data,” Mar. Geodesy 22, 259-265 (1999).
[CrossRef]

Proc. SPIE

G. Guenther, R. W. L. Thomas, and P. E. Larocque, “Design considerations for achieving high accuracy with the SHOALS Bathymetric lidar system,” Proc. SPIE 2694, 54-71 (1996).
[CrossRef]

B. Lienert, S. K. Sharma, T. Chen, F. Price, and J. M. J. Madey, “Modeling of collection efficiency in lidar spectroscopy,” Proc. SPIE 5887, 58870V (2005).
[CrossRef]

M. D. Obland, A. R. Nehrir, K. S. Repasky, and J. A. Shaw, “Initial results from a water vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source,” Proc. SPIE 6681, 66810I (2007).
[CrossRef]

Spectrochim. Acta A

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281-2287 (2005).
[CrossRef]

Other

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. F. Lentz, “Integrated remote Raman and LIBS instrument with 532 nm laser excitation for characterizing minerals at 9 M,” in Lunar and Planetary Science XXXIX (Lunar and Planetary Science Institute, Houston, Texas,2008).

Schott North America Incorporated, 122 Charlton Street, Southbridge, Mass. 01550, USA; http://www.us.schott.com/fiberoptics/english/download/clad_rods.pdf (2008).

K. Suzuki, “Gauss lens with image stabilizing function,” U.S. patent 5,781,340 (14 July 1998).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical range-gated lidar spectrometer.

Fig. 2
Fig. 2

Position of the focused image for 5 mm radius source disks ranging from 3 to 13 m.

Fig. 3
Fig. 3

ZEMAX geometric image analysis of efficiencies for a 5 mm radius disk at selected ranges through a 75 μm radius circular aperture; see text for details.

Fig. 4
Fig. 4

ZEMAX-calculated transmission efficiencies through a 35 μm radius aperture centered on the point of focus for a 3 mm radius disk at 5, 10, 20, 50, and 100 m , using an 800 mm focal length, 200 mm diameter off-axis parabolic mirror. Note the change to logarithmic scaling in comparison with the linear scaling in Fig. 3.

Fig. 5
Fig. 5

Comparison of measurements made with a digital camera and the efficiencies predicted by ZEMAX modeling that are plotted in Fig. 3; see text for details.

Fig. 6
Fig. 6

Waterfall plot of spectra collected at 0.06 m intervals from two 0.125 m long glass containers containing Rhodamine-D fluorescent dye at 3 m and Rhodamine-G dye at 4 m . These dyes have a 50 nm difference in their peak wavelength positions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x ( z ) = X offset f / z ,
m = n atmos s n lens s ,
I ( z ) = O ( z ) s n lens z ,
ω ( z ) = ω 0 1 + z 2 z R 2 ,
z R = π ω 0 2 λ .
Δ x = f X offset z Δ z z ,

Metrics