Abstract

Micro-Raman spectroscopy (MRS) is used for the first time to our knowledge to investigate brain hippocampus tissue from Alzheimer’s disease (AD) infected rats. In situ Raman analysis of tissue sections provides distinct spectra useful for distinguishing AD from normal state. The biochemical changes of brain hippocampus tissue including the deposit of β-amyloid (Aβ) protein, the increase of cholesterol, and hyperphosphorylated tau are observed through MRS when AD occurs. A more convincing multi- Raman criterion based on single Raman peaks, and further in combination with statistical analysis of the entire Raman spectrum, is found capable of classifying brain hippocampus tissues with different pathological features. This study demonstrates the brain hippocampus is an important candidate for considering the early pathological state of AD, and Raman signatures from the brain hippocampus could aid AD diagnosis. In addition, Raman results undoubtedly confirm simultaneous changes of cholesterol and Aβ in the progression of AD.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev. 81, 741-766 (2001).
    [PubMed]
  2. C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004).
    [CrossRef]
  3. D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).
  4. K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
    [PubMed]
  5. F. J. Turrell and G. Corset, The Raman Effect (Academic, 1996).
  6. J. R. Ferraro, Introductory Raman Spectroscopy (Academic, 1994).
  7. C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
    [CrossRef] [PubMed]
  8. X. F. Ling, Y. Z. Xu, S. F. Weng, W. H. Li, X. U. Zhi, R. M. Hammaker, W. G. Fateley, F. Wang, X. S. Zhou, R. D. Soloway, J. R. Ferraro, and J. G. Wu, “Investigation of normal and malignant tissue samples from the human stomach using Fourier transform Raman spectroscopy,” Appl. Spectrosc. 56, 570-573 (2002).
    [CrossRef]
  9. A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
    [CrossRef] [PubMed]
  10. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surfaces-enhance Raman spectroscopy in single living cell using gold nanoparticals,” Appl. Spectrosc. 56, 150-154 (2002).
    [CrossRef]
  11. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
    [CrossRef] [PubMed]
  12. J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
    [CrossRef] [PubMed]
  13. H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
    [CrossRef]
  14. J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
    [CrossRef] [PubMed]
  15. R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983).
    [CrossRef] [PubMed]
  16. A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996).
    [CrossRef]
  17. Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
    [CrossRef] [PubMed]
  18. M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
    [CrossRef] [PubMed]
  19. A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
    [CrossRef] [PubMed]
  20. Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
    [CrossRef] [PubMed]
  21. K. Chen, Y. J. Qin, F. Zheng, M. H. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31, 2015-2017 (2006).
    [CrossRef] [PubMed]
  22. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).
  23. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
    [CrossRef]
  24. J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
    [CrossRef] [PubMed]
  25. M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacol. Ther. 116, 266-286 (2007).
    [CrossRef] [PubMed]
  26. M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
    [CrossRef] [PubMed]
  27. M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006).
    [CrossRef] [PubMed]
  28. L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007).
    [CrossRef]
  29. C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
    [CrossRef]
  30. S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
    [CrossRef] [PubMed]
  31. P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
    [CrossRef]
  32. S. G. Baker, “The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer,” J. Natl. Cancer Inst. 95, 511-515 (2003).
    [CrossRef] [PubMed]

2007 (4)

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacol. Ther. 116, 266-286 (2007).
[CrossRef] [PubMed]

L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007).
[CrossRef]

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

2006 (3)

K. Chen, Y. J. Qin, F. Zheng, M. H. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31, 2015-2017 (2006).
[CrossRef] [PubMed]

M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006).
[CrossRef] [PubMed]

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

2005 (8)

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
[CrossRef]

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

2004 (1)

C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004).
[CrossRef]

2003 (2)

S. G. Baker, “The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer,” J. Natl. Cancer Inst. 95, 511-515 (2003).
[CrossRef] [PubMed]

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

2002 (2)

2001 (3)

D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev. 81, 741-766 (2001).
[PubMed]

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

1999 (1)

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

1997 (1)

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

1996 (2)

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

1995 (1)

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

1983 (1)

R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983).
[CrossRef] [PubMed]

1976 (1)

J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
[CrossRef] [PubMed]

Anderson, V. E.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Andrade, P. O.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Archera, J. K. J.

C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
[CrossRef]

Atwood, C. S.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Badizadegan, K.

Baker, S. G.

S. G. Baker, “The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer,” J. Natl. Cancer Inst. 95, 511-515 (2003).
[CrossRef] [PubMed]

Beier, H. T.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Benford, M. E.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Bitar, R. A.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Bobinski, M.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Boone, C.

Bruno, P. M.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Cai, Z. W.

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

Canevari, L.

L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007).
[CrossRef]

Carey, P. R.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Carpenter, S.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

Carroll, R.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Chen, C. C.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Chen, K.

Chou, I.-H.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Chui, H. C.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Clark, J. B.

L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007).
[CrossRef]

Coburn, L.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Convit, A.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Corset, G.

F. J. Turrell and G. Corset, The Raman Effect (Academic, 1996).

Coté, G. L.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Cowan, C. B.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Cross, D. J.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Dasari, R. R.

de Leon, M. J.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

De Santi, S.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Del Bigio, M. R.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Desmeules, P. J.

J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
[CrossRef] [PubMed]

Dong, J.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Dotti, C. G.

M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006).
[CrossRef] [PubMed]

Drzezga, A.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Fateley, W. G.

Feld, M. S.

Ferraro, J. R.

Ficaro, E. P.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Findeis, M. A.

M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacol. Ther. 116, 266-286 (2007).
[CrossRef] [PubMed]

Frank, C. J.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Freyer, J. P.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

Gallant, M.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

George, A. E.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Good, T. A.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Gough, K. M.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Haka, A. S.

Hammaker, R. M.

Hasegawa, T.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Henry, J. E.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Hirose, M.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Hu, J. M.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Ishii, K.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Itoh, A.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Jackson, J. B.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Jagust, W. J.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Julian, R.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Kneipp, H.

Kneipp, K.

Koljenovic, S.

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

Krafft, C.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

Kramer, J. H.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Krasnera, N.

C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004).
[CrossRef]

Kros, J. M.

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

Kuhl, D. E.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Kunapareddy, N.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Ledesma, M. D.

M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006).
[CrossRef] [PubMed]

Lee, B.

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

Li, H. L.

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

Li, W. H.

Ling, X. F.

Lippert, J. L.

J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
[CrossRef] [PubMed]

Liu, S. J.

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

Luzzati, V.

R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983).
[CrossRef] [PubMed]

Mack, W. J.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Mahadevan-Jansen, A.

A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

Mann, D.

C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
[CrossRef]

Martin, A. A.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Martinho, H.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

McCreery, R. L.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Minoshima, S.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Motz, J. T.

Mourant, J. R.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

Mungas, D.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Nabeshima, T.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Nadai, M.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Neudert, L.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

Nishimura, K.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Nitta, A.

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

Norman, D.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Pallikal, J.

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Paul, I. A.

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

Perry, G.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Powers, T. M.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Puppels, G. J.

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

Qin, Y. J.

Rak, M.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Redd, D. C.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Reed, B. R.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Rhodes, P. G.

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

Richards-Kortum, R.

A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

Rusinek, H.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Saint Louis, L. A.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Salzer, R.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

Santo, A. M. E.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Schackert, G.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

Schuff, N.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Schut, T. B.

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

Schwaiger, M.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Selkoe, D. J.

D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev. 81, 741-766 (2001).
[PubMed]

Shafer-Peltier, K. E.

Shen, A. G.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Shi, D.

Short, K. W.

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

Siedlak, S. L.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Simat, T.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

Smith, M. A.

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Sobottka, S. B.

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

Soloway, R. D.

Sudworth, C. D.

C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
[CrossRef]

C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004).
[CrossRef]

Sun, M. H.

Szeghalmi, A.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Turrell, F. J.

F. J. Turrell and G. Corset, The Raman Effect (Academic, 1996).

Tyminski, D.

J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
[CrossRef] [PubMed]

Vincent, A.

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

Wang, D. L.

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

Wang, F.

Wang, J. Z.

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

Wang, X. H.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Weiner, M. W.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Weng, S. F.

Westaway, D.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Williams, R. W.

R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983).
[CrossRef] [PubMed]

Willis, L.

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Willoch, F.

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Wisniewski, H. M.

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

Wu, J. G.

Xiao, F.

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

Xu, Y. Z.

Yang, J.

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

Yassoyama, K.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Ye, Y.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Yoshizawa, N.

Zhang, H. B.

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

Zheng, F.

Zhi, X. U.

Zhou, X. S.

Anal. Bioanal. Chem. (1)

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387, 1643-1648 (2007).
[CrossRef]

Anal. Chem. (2)

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958-7965 (2005).
[CrossRef] [PubMed]

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777-783 (1995).
[CrossRef] [PubMed]

Analyst (Amsterdam) (1)

C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Amsterdam) 130, 1070-1077 (2005).

Appl. Spectrosc. (2)

Biochemistry (1)

J. Dong, C. S. Atwood, V. E. Anderson, S. L. Siedlak, M. A. Smith, G. Perry, and P. R. Carey, “Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence,” Biochemistry 42, 2768-2773(2003).
[CrossRef] [PubMed]

Biophys. J. (1)

J. R. Mourant, K. W. Short, S. Carpenter, and J. P. Freyer, “Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures,” Biophys. J. 88, 4274-4288 (2005).
[CrossRef] [PubMed]

Brain Res. Bull. (1)

Z. W. Cai, F. Xiao, B. Lee, I. A. Paul, and P. G. Rhodes, “Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits,” Brain Res. Bull. 49, 359-365 (1999).
[CrossRef] [PubMed]

FEBS Lett. (1)

M. D. Ledesma and C. G. Dotti, “Amyloid excess in Alzheimer's disease: What is cholesterol to be blamed for?,” FEBS Lett. 580, 5525-5532 (2006).
[CrossRef] [PubMed]

Int. Psychogeriatr. (1)

M. J. de Leon, A. Convit, S. De Santi, M. Bobinski, A. E. George, H. M. Wisniewski, H. Rusinek, R. Carroll, and L. A. Saint Louis, “Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease,” Int. Psychogeriatr. 9(Sup S1), 183-190 (1997).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

J. L. Lippert, D. Tyminski, and P. J. Desmeules, “Determination of the secondary structure of proteins by laser Raman spectroscopy,” J. Am. Chem. Soc. 98, 7075-7080 (1976).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

M. Gallant, M. Rak, A. Szeghalmi, M. R. Del Bigio, D. Westaway, J. Yang, R. Julian, and K. M. Gough, “Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue,” J. Biol. Chem. 281, 5-8 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

A. G. Shen, Y. Ye, X. H. Wang, C. C. Chen, H. B. Zhang, and J. M. Hu, “Raman scattering properties of human pterygium tissue,” J. Biomed. Opt. 10, 024036 (2005).
[CrossRef] [PubMed]

A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31-70 (1996).
[CrossRef]

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[CrossRef] [PubMed]

J. Mol. Biol. (1)

R. W. Williams and V. Luzzati, “Estimation of protein secondary structure from the laser Raman amide I spectrum,” J. Mol. Biol. 166, 581-603 (1983).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. (1)

S. G. Baker, “The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer,” J. Natl. Cancer Inst. 95, 511-515 (2003).
[CrossRef] [PubMed]

J. Neural Transm. (1)

Y. Zhang, H. L. Li, D. L. Wang, S. J. Liu, and J. Z. Wang, “A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells and implies a new mechanism in Alzheimer pathology,” J. Neural Transm. 113, 1487-1497 (2006).
[CrossRef] [PubMed]

J. Neurochem. (1)

A. Itoh, A. Nitta, M. Nadai, K. Nishimura, M. Hirose, T. Hasegawa, and T. Nabeshima, “Dysfunction of cholinergic and dopaminergic neuronal systems in β-amyloid protein-infused rats,” J. Neurochem. 66, 1113-1117 (1996).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

K. Ishii, F. Willoch, S. Minoshima, A. Drzezga, E. P. Ficaro, D. J. Cross, D. E. Kuhl, and M. Schwaiger, “Statistical brain mapping of F-18-FDG PET in Alzheimer's disease: validation of anatomic standardization for atrophied brains,” J. Nucl. Med. 42, 548-557 (2001).
[PubMed]

Neurochem. Res. (1)

L. Canevari and J. B. Clark, “Alzheimer's disease and cholesterol: the fat connection,” Neurochem. Res. 32, 739-750 (2007).
[CrossRef]

Neurology (1)

D. Mungas, W. J. Jagust, B. R. Reed, J. H. Kramer, M. W. Weiner, N. Schuff, D. Norman, W. J. Mack, L. Willis, and H. C. Chui, “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology 57, 2229-2235 (2001).

Opt. Lett. (1)

Pharmacol. Ther. (1)

M. A. Findeis, “The role of amyloid β peptide 42 in Alzheimer's disease,” Pharmacol. Ther. 116, 266-286 (2007).
[CrossRef] [PubMed]

Physiol. Rev. (1)

D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiol. Rev. 81, 741-766 (2001).
[PubMed]

Plasmonics (1)

H. T. Beier, C. B. Cowan, I.-H. Chou, J. Pallikal, J. E. Henry, M. E. Benford, J. B. Jackson, T. A. Good, and G. L. Coté, “Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells,” Plasmonics 2, 55-64 (2007).
[CrossRef]

Proc. SPIE (2)

C. D. Sudworth and N. Krasnera, “Raman spectroscopy of Alzheimer's diseased tissue,” Proc. SPIE 5321, 93-101 (2004).
[CrossRef]

C. D. Sudworth, J. K. J. Archera, and D. Mann, “The potential use of Raman spectroscopy for diagnosis of Alzheimer's disease,” Proc. SPIE 5969, 59691G (2005).
[CrossRef]

Spectrochim. Acta Part A (1)

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529-1535 (2005).
[CrossRef]

Other (2)

F. J. Turrell and G. Corset, The Raman Effect (Academic, 1996).

J. R. Ferraro, Introductory Raman Spectroscopy (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Average Raman spectra of hippocampus tissues of normal and AD rats.

Fig. 2
Fig. 2

Raman difference spectrum originating from normal and AD infected brain hippocampus of rats (average AD–average normal).

Fig. 3
Fig. 3

Spectral decomposition of the wide Raman peak located at amide I region ( 1640 1700 c m 1 ) comparing the first day’s with the eighth day’s brain hippocampus of rats.

Fig. 4
Fig. 4

(a) First, (b) second, and (c) third principal components.

Fig. 5
Fig. 5

Performance of diagnostic model. (a) ROC curves for this model (solid curve) and two indistinguishable populations (dash line); (b) scatterplot for the validation cases. The diagnostic line is given by Eq. (1) with P = 0.65 .

Tables (1)

Tables Icon

Table 1 Raman Band Position and Tentative Assignment of Normal and Alzheimer’s Disease Infected Hippocampus Tissues of Rats [22, 23, 24]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln [ p / 1 p ] = 0.7785 PC 1 + 3.2086 PC 2 1.6782 PC 3 3.667.

Metrics