Abstract

An online welding quality system based on the use of imaging spectroscopy is proposed and discussed. Plasma optical spectroscopy has already been successfully applied in this context by establishing a direct correlation between some spectroscopic parameters, e.g., the plasma electronic temperature and the resulting seam quality. Given that the use of the so-called hyperspectral devices provides both spatial and spectral information, we propose their use for the particular case of arc welding quality monitoring in an attempt to determine whether this technique would be suitable for this industrial situation. Experimental welding tests are presented, and the ability of the proposed solution to identify simulated defects is proved. Detailed spatial analyses suggest that this additional dimension can be used to improve the performance of the entire system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).
  2. W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
    [PubMed]
  3. V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
    [CrossRef]
  4. P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
    [CrossRef] [PubMed]
  5. B. A. Weinstock, J. Janni, L. Hagen, and S. Wright “Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis,” Appl. Spectrosc. 60, 9-16 (2006).
    [CrossRef] [PubMed]
  6. K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
    [CrossRef]
  7. A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
    [CrossRef]
  8. B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
    [CrossRef]
  9. P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
    [CrossRef]
  10. L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
    [CrossRef]
  11. G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
    [CrossRef]
  12. A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003).
    [CrossRef]
  13. A. Ancona, V. Spagnolo, P. M. Lugara, and M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process,” Appl. Opt. 40, 6019-6025 (2001).
    [CrossRef]
  14. P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002).
    [CrossRef]
  15. H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170-1176 (1963).
    [CrossRef]
  16. G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984).
    [CrossRef]
  17. G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
    [CrossRef]
  18. J. F. Bott, “Spectroscopic measurement of temperatures in an argon plasma arc,” Phys. Fluids 9, 1540-1547 (1966).
    [CrossRef]
  19. A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” J. Phys. D 27, 268-272(1993).
    [CrossRef]
  20. J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
    [CrossRef]
  21. J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
    [CrossRef]
  22. J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007).
    [CrossRef] [PubMed]
  23. J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004).
    [CrossRef]
  24. T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
    [CrossRef]

2008 (3)

A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
[CrossRef]

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

2007 (2)

P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
[CrossRef] [PubMed]

J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007).
[CrossRef] [PubMed]

2006 (2)

B. A. Weinstock, J. Janni, L. Hagen, and S. Wright “Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis,” Appl. Spectrosc. 60, 9-16 (2006).
[CrossRef] [PubMed]

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

2004 (3)

J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004).
[CrossRef]

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

2003 (2)

A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003).
[CrossRef]

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

2002 (2)

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

2001 (1)

1997 (2)

G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
[CrossRef]

T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
[CrossRef]

1994 (1)

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

1993 (1)

A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” J. Phys. D 27, 268-272(1993).
[CrossRef]

1992 (1)

W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
[PubMed]

1986 (1)

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

1984 (1)

G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984).
[CrossRef]

1966 (1)

J. F. Bott, “Spectroscopic measurement of temperatures in an argon plasma arc,” Phys. Fluids 9, 1540-1547 (1966).
[CrossRef]

1963 (1)

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170-1176 (1963).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004).
[CrossRef]

Aikio, M.

T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
[CrossRef]

Al-Habaibeh, A.

A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003).
[CrossRef]

Ancona, A.

Aragon, C.

J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004).
[CrossRef]

Beuthan, J.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Bindig, U.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Bott, J. F.

J. F. Bott, “Spectroscopic measurement of temperatures in an argon plasma arc,” Phys. Fluids 9, 1540-1547 (1966).
[CrossRef]

Cardoso, R.

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

Cobo, A.

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007).
[CrossRef] [PubMed]

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

Conde, O. M.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

Cram, L. E.

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

de Blasiis, D.

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002).
[CrossRef]

Dörschel, K.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Drews, D.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Eberle, H. G.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Esser, N.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Farmer, A. J. D.

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984).
[CrossRef]

Feldner, P. W.

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

Fernandez, S.

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

Ferrara, M.

Garcia-Allende, P. B.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

Geurts, J.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Grad, L.

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

Grant, W. B.

W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
[PubMed]

Griem, H. R.

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170-1176 (1963).
[CrossRef]

Grum, J.

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

Haddad, G. N.

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984).
[CrossRef]

Hagen, L.

Janni, J.

Jaúregui, C.

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

Kagann, R. H.

W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
[PubMed]

Keraenen, H.

T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
[CrossRef]

Kovitya, P.

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

Lawrence, K. C.

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

Lopez-Higuera, J. M.

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007).
[CrossRef] [PubMed]

López-Higuera, J. M.

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

Lugara, P. M.

Marotta, A.

A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” J. Phys. D 27, 268-272(1993).
[CrossRef]

McClenny, W. A.

W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
[PubMed]

Mirapeix, J.

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

J. Mirapeix, A. Cobo, A. Quintela, and J. M. Lopez-Higuera, “Embedded spectroscopic fiber sensor for on-line arc-welding analysis,” Appl. Opt. 46, 3215-3220 (2007).
[CrossRef] [PubMed]

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

Moens, L.

P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
[CrossRef] [PubMed]

Müller, G.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Park, B.

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

Parkin, R.

A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003).
[CrossRef]

Plaza, A.

A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
[CrossRef]

Plaza, J.

A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
[CrossRef]

Polajnar, I.

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

Poole, G. H.

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

Quintela, A.

Richter, W.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Rohde, E.

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Sforza, P.

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002).
[CrossRef]

Slabe, J. M.

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

Smith, D. P.

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

Spagnolo, V.

Vaarala, T.

T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
[CrossRef]

Valencia, D.

A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
[CrossRef]

Vandenabeele, H. G. M.

P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
[CrossRef] [PubMed]

Vandenabeele, P.

P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
[CrossRef] [PubMed]

Wagner, V.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Weinstock, B. A.

Windham, W. R.

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

Wright, S.

Wu, L.

G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
[CrossRef]

Yan, Z. H.

G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
[CrossRef]

Zahn, D. R. T.

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

Zhang, G. J.

G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Rev. (1)

P. Vandenabeele, H. G. M. Vandenabeele, and L. Moens, “A decade of Raman spectroscopy in art and archaeology,” Chem. Rev. 107, 675-686 (2007).
[CrossRef] [PubMed]

IEEE Trans. Plasma Sci. (1)

G. N. Haddad, A. J. D. Farmer, P. Kovitya, and L. E. Cram, “Physical processes in gas-tungsten arcs,” IEEE Trans. Plasma Sci. 14, 333-336 (1986).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

A. Al-Habaibeh and R. Parkin, “An autonomous low-cost infrared system for the on-line monitoring of manufacturing processes using novelty detection,” Int. J. Adv. Manuf. Technol. 22, 249-258 (2003).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

L. Grad, J. Grum, I. Polajnar, and J. M. Slabe, “Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding,” Int. J. Mach. Tools Manuf. 44, 555-561 (2004).
[CrossRef]

J. Air Waste Manage. Assoc. (1)

W. B. Grant, R. H. Kagann, and W. A. McClenny, “Optical remote measurement of toxic gases,” J. Air Waste Manage. Assoc. 42, 18-30 (1992).
[PubMed]

J. Appl. Phys. (1)

V. Wagner, D. Drews, N. Esser, D. R. T. Zahn, J. Geurts, and W. Richter, “Raman monitoring of semiconductor growth,” J. Appl. Phys. 75, 7330-7333 (1994).
[CrossRef]

J. Phys. D (3)

J. Mirapeix, A. Cobo, S. Fernandez, R. Cardoso, and J. M. Lopez-Higuera, “Spectroscopic analysis of the plasma continuum radiation for on-line arc-welding defect detection,” J. Phys. D 41, 135202 (2008).
[CrossRef]

A. Marotta, “Determination of axial thermal plasma temperatures without Abel inversion,” J. Phys. D 27, 268-272(1993).
[CrossRef]

G. N. Haddad and A. J. D. Farmer, “Temperature determinations in a free-burning arc: 1. Experimental techniques and results in argon,” J. Phys. D 17, 1189-1196 (1984).
[CrossRef]

Laser Phys. (1)

G. Müller, E. Rohde, J. Beuthan, K. Dörschel, U. Bindig, and H. G. Eberle, “Optoelectronic diagnostics in biomedical engineering,” Laser Phys. 13, 196-206 (2003).

Meas. Sci. Technol. (1)

J. Mirapeix, A. Cobo, C. Jaúregui, and J. M. López-Higuera, “Fast algorithm for spectral processing with application to on-line welding quality assurance,” Meas. Sci. Technol. 17, 2623-2629 (2006).
[CrossRef]

NDT & E Int. (1)

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT & E Int. 35, 37-43 (2002).
[CrossRef]

Parallel Comput. (1)

A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations,” Parallel Comput. 34, 92-114 (2008).
[CrossRef]

Phys. Fluids (1)

J. F. Bott, “Spectroscopic measurement of temperatures in an argon plasma arc,” Phys. Fluids 9, 1540-1547 (1966).
[CrossRef]

Phys. Rev. (1)

H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131, 1170-1176 (1963).
[CrossRef]

Proc. SPIE (3)

K. C. Lawrence, W. R. Windham, B. Park, D. P. Smith, and G. H. Poole, “Comparison between visible/NIR spectroscopy and hyperspectral imaging for detecting surface contaminants on poultry carcasses,” Proc. SPIE 5271, 35-42 (2004).
[CrossRef]

B. Park, K. C. Lawrence, W. R. Windham, D. P. Smith, and P. W. Feldner, “Hyperspectral imaging for food processing automation,” Proc. SPIE 4816, 308-316 (2002).
[CrossRef]

T. Vaarala, M. Aikio, and H. Keraenen, “An advanced prism-grating-prism imaging spectrograph in on-line industrial applications,” Proc. SPIE 3101, 322-330 (1997).
[CrossRef]

Sens. Actuators B (1)

P. B. Garcia-Allende, O. M. Conde, J. Mirapeix, A. Cobo, and J. M. Lopez-Higuera, “Quality control of industrial processes by combining a hyperspectral sensor and Fisher's linear discriminant analysis,” Sens. Actuators B 129, 977-984(2008).
[CrossRef]

Spectrochim. Acta Part B (1)

J. A. Aguilera and C. Aragon, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements,” Spectrochim. Acta Part B 59, 1861-1876 (2004).
[CrossRef]

Trans. Nonferr. Met. Soc. China (1)

G. J. Zhang, Z. H. Yan, and L. Wu, “Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy,” Trans. Nonferr. Met. Soc. China 16, 522-526 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the acquisition of hyperspectral images of the welding plasma column.

Fig. 2
Fig. 2

Experimental setup with the imaging (center) and traditional spectroscopic (left and right) systems.

Fig. 3
Fig. 3

Example of plasma spectrum captured by the CCD spectrometer with some emission lines associated with their corresponding species.

Fig. 4
Fig. 4

Hyperspectral image of the plasma column for a seam performed with (a) 26 A and (c) 50 A. Spectral capture of a seam performed with (b) 26 A and (d) 50 A. (e) Detail extracted from (c).

Fig. 5
Fig. 5

(a), (c), (e) Hyperspectral image of the plasma column for a seam performed with 37 A and a gas flow rate of 12 l/min; (b), (d) gas flow rate reduction; (f), (g) plasma spectra captured during standard and defective welding conditions; (h) plasma electronic temperature profile for the defective seam.

Fig. 6
Fig. 6

Image processing scheme proposed for generation of the output monitoring parameter.

Fig. 7
Fig. 7

(a) Seam with incision at the top and (b) seam with incision at the bottom. (c), (d) Mean intensity profiles for ROI 1 and ROI 2, repectively; (e) selected ROIs for the acquired hyperspectral images.

Fig. 8
Fig. 8

Seam with gas shortages and average spectral responses for (a) pixels 1 to 5, (b) pixels 256 to 260, (c) pixels 516 to 520, (d) pixels 636 to 640.

Fig. 9
Fig. 9

Spectra extracted from the hyperspectral images captured before (sound weld) and during the incision (defect) performed on a plate.

Tables (1)

Tables Icon

Table 1 Chemical Composition of AISI-304

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N e 1.6 × 10 12 T e 1 / 2 ( Δ E ) 3 ,
T e = E m ( 2 ) E m ( 1 ) k ln [ E m ( 1 ) I ( 1 ) A ( 2 ) g m ( 2 ) λ ( 1 ) E m ( 2 ) I ( 2 ) A ( 1 ) g m ( 1 ) λ ( 2 ) ] ,
ln ( I mn λ mn A mn g m ) = ln ( h c N Z ) E m k T e .

Metrics