Abstract

A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization- dependent narrowband acousto-optic tunable filters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  2. W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Opt. Lett. 22, 1515-1517 (1997).
    [CrossRef]
  3. W. F. Liu, P. St. J. Russell, and L. Dong, “100% Efficient narrow-band acoustooptic tunable reflector using fiber Bragg grating,” J. Lightwave Technol. 16, 2006-2009 (1998).
    [CrossRef]
  4. P. St. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17, 1421-1429 (2000).
    [CrossRef]
  5. W. F. Liu, I. M. Liu, L. W. Chung, D. W. Huang, and C. C. Yang, “Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating,” Opt. Lett. 25, 1319-1321 (2000).
    [CrossRef]
  6. N. H. Sun, C. C. Chou, M. J. Chang, C. N. Lin, C. C. Yang, Y. W. Kiang, and W. F. Liu, “Analysis of phase-matching conditions in flexural-wave modulated fiber Bragg grating,” J. Lightwave Technol. 20, 311-315 (2002).
    [CrossRef]
  7. M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
    [CrossRef]
  8. D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
    [CrossRef]
  9. N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
    [CrossRef]
  10. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).
    [CrossRef]

2004 (1)

D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
[CrossRef]

2003 (1)

M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
[CrossRef]

2002 (1)

2000 (2)

1998 (1)

1997 (2)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

1983 (1)

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Chang, M. J.

Chen, T. C.

M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
[CrossRef]

Chou, C. C.

Chung, L. W.

Dong, L.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Fu, M. Y.

M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
[CrossRef]

Huang, D. W.

Kiang, Y. W.

Kim, B. Y.

D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
[CrossRef]

Lin, C. N.

Liu, I. M.

Liu, W. F.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Park, H. S.

D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
[CrossRef]

Russell, P. St. J.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).
[CrossRef]

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Seikai, S.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Sheng, H. J.

M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
[CrossRef]

Shibata, N.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Sun, N. H.

Tateda, M.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

Yang, C. C.

Yeom, D. I.

D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal birefringence and polarization mode dispersion in single-mode fibers with stress-induced anisotropy,” IEEE J. Quantum Electron. 19, 1110-1115 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Y. Fu, W. F. Liu, T. C. Chen, and H. J. Sheng, “Acousto-optic-induced cladding-mode reflection in a blazed-superstructure fiber grating,” IEEE Photon. Technol. Lett. 15, 1392-1394(2003).
[CrossRef]

D. I. Yeom, H. S. Park, and B. Y. Kim, “Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1313-1315 (2004).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup of an acousto-optic modulated PM FBG and (b) vibrating directions of the PZTs.

Fig. 2
Fig. 2

(a) FBG original reflection peaks and (b) reflection spectra when PZT 1 works ( θ = θ 0 ). Keeping V p p 1 = 13.3 V and adopting f a 1 = 0.90 MHz and 1.22 MHz , respectively, the spectra are shown as solid and dashed curves, respectively. The inset in (b) shows the linear relation between Δ λ and f a 1 .

Fig. 3
Fig. 3

Reflection spectra when θ rotates; f a = 0.90 MHz . Solid curve, reflection spectrum when θ = θ 0 ( PZT 1 works separately and V P P 1 = 13.3 V ). Dashed curve, reflection spectrum when θ = θ 0 + 120 ° (two PZTs work simultaneously, V p p 1 = 6.7 V and V p p 2 = 11.5 V ). Inset, intensity variation of the x -polarized sidelobe of the short wavelength, when θ changes from θ 0 to θ 0 + 180 ° .

Fig. 4
Fig. 4

Index modulation mechanism of transverse acoustic waves applied to a FBG in PANDA PMF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I V p p 1 2 + V p p 2 2 , θ = θ 0 + arc tan ( V p p 2 V p p 1 ) .
P y 0 P x 0 = N E B 0 n 0 3 p 44 ( 1 μ ) ,
P y = P y 0 cos [ k s A sin ( k s z ) ] , P z = P y 0 sin [ k s A sin ( k s z ) ] ,
P z P L = P y 0 sin [ k s A sin ( k s z ) ] E A sin ( k s z ) P y 0 k s E 8.5 ,
Δ n = Δ n 0 cos { K [ z cos θ A ( cos ( k s z ) + P x 0 P y 0 sin ( k s z ) ) d z ] } = J 0 ( KAG / k s ) + n = 1 J n ( KAG / k s ) { ( 1 ) n cos [ ( K + n k s ) z ] + cos [ ( K n k s ) z ] } , G = cos ( k s z ) + P x 0 P y 0 sin ( k s z ) ,

Metrics