Abstract

The particulate backscattering ratio (bbp/bp) is a useful indicator of the angular scattering characteristics of natural waters. Recent studies have shown evidence both for and against significant spectral variability in bbp/bp in the visible domain, but most show significant variability in its magnitude. We present results from a case study in which both backscattering and scattering coefficients were measured at nine wavelengths in a region of UK coastal waters where optical scattering is strongly influenced by inorganic particles and where a wide range of turbidities is found in a small geographic area. Using a new approach based on regression analysis of in situ signals, it is shown that, for this study site, most of the apparent variability in the magnitude of the backscattering ratio can be attributed to measurement uncertainties. Regression analysis suggests that bbp/bp is wavelength dependent for these mineral-rich waters. This conclusion can only be avoided by positing the existence of undocumented, systematic, wavelength- dependent errors in backscattering measurements made by two independently calibrated sensors. These results are important for radiative transfer simulations in mineral-dominated waters where the backscattering ratio has often been assumed to be spectrally flat. Furthermore, spectral dependence also has profound implications for our understanding of the relationship between bbp/bp and particle size distributions in coastal waters since the commonly assumed power-law distribution is associated with a spectrally flat particulate backscattering ratio for nonabsorbing particles.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. 72-28 (Scripps Institute of Oceanography, 1972).
  2. X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).
  3. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563-571 (2003).
    [CrossRef]
  4. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
    [CrossRef]
  5. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035-1050(2002).
    [CrossRef]
  6. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).
  7. W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).
    [CrossRef]
  8. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019-7031 (2007).
    [CrossRef]
  9. D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369-4374 (2003).
    [CrossRef]
  10. D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44, 126-135 (2005).
  11. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723-4731 (2004).
    [CrossRef]
  12. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634-3646 (2003).
    [CrossRef]
  13. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
    [CrossRef]
  14. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
    [CrossRef]
  15. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
    [CrossRef]
  16. O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070-7077 (1994).
    [CrossRef]
  17. A. Morel and A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special references to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1981), pp. 313-327.
  18. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).
  19. D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci 68, 305-316 (2006).
    [CrossRef]
  20. J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994).
    [CrossRef]
  21. D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15, 12834-12849 (2007).
    [CrossRef]
  22. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
    [CrossRef]
  23. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001).
    [CrossRef]
  24. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057-6067 (1997).
    [CrossRef]
  25. S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanzen 167, 191-194 (1975).
  26. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).
  27. D. Risović, “Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater,” Appl. Opt. 41, 7092-7101 (2002).
    [CrossRef]
  28. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).
  29. D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581-1591 (2005).
  30. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
    [CrossRef]
  31. F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).
  32. M. L. Wells and E. D. Goldberg, “The distribution of colloids in the North Atlantic and Southern Oceans,” Limnol. Oceanogr. 39, 286-302 (1994).

2008 (3)

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).
[CrossRef]

2007 (4)

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019-7031 (2007).
[CrossRef]

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15, 12834-12849 (2007).
[CrossRef]

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

2006 (4)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci 68, 305-316 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
[CrossRef]

2005 (2)

D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44, 126-135 (2005).

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581-1591 (2005).

2004 (3)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723-4731 (2004).
[CrossRef]

2003 (4)

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634-3646 (2003).
[CrossRef]

D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369-4374 (2003).
[CrossRef]

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

2002 (3)

2001 (2)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001).
[CrossRef]

1997 (1)

1994 (3)

O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070-7077 (1994).
[CrossRef]

M. L. Wells and E. D. Goldberg, “The distribution of colloids in the North Atlantic and Southern Oceans,” Limnol. Oceanogr. 39, 286-302 (1994).

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

1975 (1)

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanzen 167, 191-194 (1975).

Arnone, R. A.

Babin, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15, 12834-12849 (2007).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

Baratange, F.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Barnard, A. H.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Boss, E.

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019-7031 (2007).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035-1050(2002).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001).
[CrossRef]

Bricaud, A.

A. Morel and A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special references to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1981), pp. 313-327.

Chami, M.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef]

Claustre, H.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

Cowles, T. J.

Craig, S.

Cunningham, A.

Dana, D. R.

Davis, C. O.

Donaghay, P. L.

Doxaran, D.

Effler, S. W.

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

Franz, B. A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Freeman, S. A.

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

Goldberg, E. D.

M. L. Wells and E. D. Goldberg, “The distribution of colloids in the North Atlantic and Southern Oceans,” Limnol. Oceanogr. 39, 286-302 (1994).

Goode, W.

Gould, R. W.

Humphrey, G. F.

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanzen 167, 191-194 (1975).

Huot, Y.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

Jeffrey, S. W.

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanzen 167, 191-194 (1975).

Johnson, B.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

Kaczmarek, S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Khomenko, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

Khomenko, G. A.

Kitchen, J. C.

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

Korotaev, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

Korotaev, G. K.

Ladner, S.

Lamela, G.

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

Lee, M. E.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

Lee, M. E.-G.

Lewis, M.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

Lewis, M. R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

Leymarie, E.

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

Maffione, R. A.

Marken, E.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

Martynov, O. V.

McKee, D.

Melville, W. K.

Mobley, C. D.

Moore, C. M.

Morel, A.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

A. Morel and A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special references to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1981), pp. 313-327.

Pegau, W. S.

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15, 7019-7031 (2007).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001).
[CrossRef]

Peng, F.

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. 72-28 (Scripps Institute of Oceanography, 1972).

Piskozub, J.

Platt, T.

Reynolds, R. A.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Rhea, W. J.

Rhoades, B.

Risovic, D.

Röttgers, R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Sathyendranath, S.

Sciandra, A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Shybanov, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Shybanov, E. B.

Snyder, W. A.

Stamnes, J. J.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

Stavn, R.

Stramska, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Stramski, D.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581-1591 (2005).

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723-4731 (2004).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634-3646 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

Sullivan, J. M.

Sundman, L. K.

Sydor, M.

Terrill, E.

Twardowski, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Twardowski, M. S.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

Ulloa, O.

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Weidemann, A.

Wells, M. L.

M. L. Wells and E. D. Goldberg, “The distribution of colloids in the North Atlantic and Southern Oceans,” Limnol. Oceanogr. 39, 286-302 (1994).

Whitmire, A. L.

Wozniak, S. B.

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581-1591 (2005).

Zaneveld, J. R. V.

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

Zhang, X.

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

Appl. Opt. (12)

O. Ulloa, S. Sathyendranath, and T. Platt, “Effect of the particle size distribution on the backscattering ratio in seawater,” Appl. Opt. 33, 7070-7077 (1994).
[CrossRef]

R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057-6067 (1997).
[CrossRef]

E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40, 5503-5507 (2001).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035-1050(2002).
[CrossRef]

D. Risović, “Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater,” Appl. Opt. 41, 7092-7101 (2002).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634-3646 (2003).
[CrossRef]

D. McKee, A. Cunningham, and S. Craig, “Semi-empirical correction algorithm for AC-9 measurements in a coccolithophore bloom,” Appl. Opt. 42, 4369-4374 (2003).
[CrossRef]

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43, 4723-4731 (2004).
[CrossRef]

D. McKee and A. Cunningham, “Evidence for wavelength dependence of the scattering phase function and its implication for modeling radiance transfer in shelf seas,” Appl. Opt. 44, 126-135 (2005).

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45, 5294-5309 (2006).
[CrossRef]

W. A. Snyder, R. A. Arnone, C. O. Davis, W. Goode, R. W. Gould, S. Ladner, G. Lamela, W. J. Rhea, R. Stavn, M. Sydor, and A. Weidemann, “Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters,” Appl. Opt. 47, 666-677 (2008).
[CrossRef]

Biochem. Physiol. Pflanzen (1)

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanzen 167, 191-194 (1975).

Biogeosci. (3)

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosci. 5, 171-201 (2008).

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4, 1041-1058 (2007).

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5, 495-507 (2008).

Estuar. Coast. Shelf Sci (1)

D. McKee and A. Cunningham, “Identification and characterisation of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents,” Estuar. Coast. Shelf Sci 68, 305-316 (2006).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

J. Geophys. Res. (3)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

Limnol. Oceanogr. (5)

X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273-1282 (2002).

F. Peng and S. W. Effler, “Suspended minerogenic particles in a reservoir: Light-scattering features from individual particle analysis,” Limnol. Oceanogr. 52, 204-216 (2007).

M. L. Wells and E. D. Goldberg, “The distribution of colloids in the North Atlantic and Southern Oceans,” Limnol. Oceanogr. 39, 286-302 (1994).

D. Stramski and S. B. Wozniak, “On the role of colloidal particles in light scattering in the ocean,” Limnol. Oceanogr. 50, 1581-1591 (2005).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843-859 (2003).

Opt. Express (2)

Proc. SPIE (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. M. Moore, “The scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

Prog. Oceanogr. (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Other (2)

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Tech. Rep. 72-28 (Scripps Institute of Oceanography, 1972).

A. Morel and A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special references to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, 1981), pp. 313-327.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Map of the British Isles with the location of the sampling area in the Bristol Channel marked with a rectangle. The lower panel shows station positions in the Bristol Channel marked by crosses.

Fig. 2
Fig. 2

IOP spectra for the full range of data collected in the Bristol Channel up to the point where all BB9 backscattering channels reached saturation. (a) Non-water absorption spectra increase strongly toward blue wavelengths, typical of strong mineral and/or CDOM absorption. Some stations show the influence of phytoplankton pigment absorption at 676 nm . (b), (c) Non-water attenuation and particulate scattering spectra show strong spectral consistency across the range of signals encountered. (d) Particulate backscattering spectra decrease toward both the blue- and red-NIR ends of the spectrum. Note that red-NIR channels reached saturation at much lower levels of turbidity than blue-green channels.

Fig. 3
Fig. 3

Distribution of particulate backscattering ratios at 532 nm calculated on a point-by-point basis for Bristol Channel data shows an apparent order of magnitude variability.

Fig. 4
Fig. 4

Particulate backscattering plotted against particulate scattering with (a) best-fit regression (solid line), 95% confidence interval for the slope (dashed line) and 95% prediction interval (dashed-dotted line), and (b) point-by-point mean (solid line) and minimum/maximum range values (dashed lines).

Fig. 5
Fig. 5

Plots of (a)  b p 532 versus b p 510 and (b)  b b p 532 versus b b p 510 show that virtually all the spectral variability between these data sets can be accounted for with geometric mean regression best-fit lines. These regressions are used to derive residual values of (c)  b p 532 and (d)  b b p 532 , which show that measurement uncertainty ranges are constant for each parameter.

Fig. 6
Fig. 6

Point-by-point values of b b p / b p calculated with offset- corrected b p values show strong apparent variability at low scattering signals but tend toward the best-fit regression value of b b p / b p as scattering increases. More than 60% of observed point-by-point b b p / b p values fall within the region (dashed curves) that is accounted for by measurement uncertainties.

Fig. 7
Fig. 7

(a) Wavelength dependence of point-by-point b b p / b p is insignificant compared to the apparent variability in magnitude at each wavelength. Standard deviations are shown with thicker error bars, maximum and minimum range values with thinner bars. (b)  b b p / b p from regression slopes have tight confidence intervals and show potentially statistically significant wavelength dependency. b b p / b p calculated using Hydroscat-2 data (black circles) shows similar magnitude ( ± 10 % ) and wavelength dependency. Dotted lines indicate intervals representing ± 30 % uncertainty in the slope calibration of the BB9. This is the minimum calibration slope error that could result in a spectrally flat particulate backscattering ratio.

Fig. 8
Fig. 8

Particulate backscattering spectra modeled using Mie theory with real refractive index n = 1.15 and a power-law size distribution with slope ξ = 3 . (a) The imaginary refractive index is modeled to increase exponentially with decreasing wavelength in a manner consistent with observed mineral absorption characteristics. (b) The effect of mineral absorption is to depress b b p / b p in the blue (dashed curve) relative to the case with zero absorption (solid curve).

Fig. 9
Fig. 9

Particulate backscattering spectra modeled by Mie theory for power-law size distributions with constant values of real and imaginary refractive index (dashed and dotted curves) exhibit no significant spectral variability. Introducing a separate mode (lognormal in this case) of particles is enough to introduce significant wavelength dependence in the b b p / b p spectrum (squares). b b p / b p from regression analysis of field data (circles) is shown for an order of magnitude comparison, but there are insufficient data available to perform a full theoretical validation of the field values of b b p / b p .

Tables (1)

Tables Icon

Table 1 Coefficients of Determination for Linear Regressions of IOPs against MSS and Chl

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

b b p b p = b b p m ± ε b b p b p m ± ε b p .
b b p b p = π / 2 π β ( θ ) sin θ d θ 0 π β ( θ ) sin θ d θ ,

Metrics