Abstract

We investigate a nanorod-mediated surface plasmon resonance (SPR) sensor for sensitivity enhancement. The theoretical model containing an anisotropic layer of nanorod is investigated using four-layer Fresnel equations and the effective medium theory. The properties of the nanorod-mediated SPR curves versus the metal thin film thickness df, length l, and diameter D of the nanorod are studied in the environment with refractive indices of 1.00 and 1.33. Compared to the conventional thin metal film SPR configuration, the nanorod-mediated SPR sensor presents a larger resonance angle shift and the sensitivity increases with increasing refractive index of the target analyte. Besides the theoretical analysis, we fabricate different Ag nanorod array/Ag film substrates by oblique angle deposition and characterize their SPR responses using a laboratory-made SPR setup in air and in deionized (DI) water. Compared with the Ag film sample, the SPR angles observed for Ag nanorods/Ag film samples shift to larger angles in air (for shorter nanorods), while it is hard to observe the SPR angle in DI water, which is qualitatively consistent with theoretical results. We believe that the nanorod-mediated SPR sensor is able to improve the sensitivity and the theoretical discussion is helpful for sensor fabrication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  2. C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
    [CrossRef]
  3. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
    [CrossRef]
  4. N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).
  5. P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
    [CrossRef]
  6. A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
    [CrossRef]
  7. S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys. 70, 3647-3654 (1991).
    [CrossRef]
  8. C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008).
    [CrossRef]
  9. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005).
    [CrossRef]
  10. R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
    [CrossRef]
  11. J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
    [CrossRef]
  12. G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007).
    [CrossRef]
  13. X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
    [CrossRef]
  14. S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
    [CrossRef]
  15. P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
    [CrossRef]
  16. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
    [CrossRef]
  17. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
    [CrossRef]
  18. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007).
    [CrossRef]
  19. J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
    [CrossRef]
  20. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006).
    [CrossRef]
  21. P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
    [CrossRef]
  22. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
    [CrossRef]
  23. X. Y. Yang and D. M. Liu, “Sensitivity enhancement of surface plasmon resonance sensors through planar metallic film closely coupled to nanogratings,” Chin. Opt. Lett. 5, 563-565(2007).
  24. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725-735 (2008).
    [CrossRef]
  25. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
    [CrossRef]
  26. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004).
    [CrossRef]
  27. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472-1478 (2008).
    [CrossRef]
  28. F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
    [CrossRef]
  29. Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
    [CrossRef]
  30. Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).
  31. K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
    [CrossRef]
  32. A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
    [CrossRef]
  33. C. L. Mitsas and D. I. Siapkas, “Generalized matrix-method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678-1683 (1995).
    [CrossRef]
  34. G. B. Smith, “Effective medium theory and angular-dispersion of optical-constants in films with oblique columnar structure,” Opt. Commun. 71, 279-284 (1989).
    [CrossRef]
  35. G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin-films containing metal and voids,” Appl. Opt. 29, 3685-3693 (1990).
    [CrossRef]
  36. Y. J. Jen and C. C. Lee, “Reflection and transmission phenomena of waves propagating between an isotropic medium and an arbitrarily oriented anisotropic medium,” Opt. Lett. 26, 190-192 (2001).
    [CrossRef]
  37. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007).
    [CrossRef]
  38. A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
    [CrossRef]
  39. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford U. Press, 1999).
  40. D. R. H. Craig and F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  41. A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
    [CrossRef]
  42. R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
    [CrossRef]
  43. J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
    [CrossRef]
  44. E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
    [CrossRef]

2008 (11)

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008).
[CrossRef]

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
[CrossRef]

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725-735 (2008).
[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472-1478 (2008).
[CrossRef]

2007 (8)

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A 24, 522-529 (2007).
[CrossRef]

D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872-880 (2007).
[CrossRef]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
[CrossRef]

X. Y. Yang and D. M. Liu, “Sensitivity enhancement of surface plasmon resonance sensors through planar metallic film closely coupled to nanogratings,” Chin. Opt. Lett. 5, 563-565(2007).

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007).
[CrossRef]

2006 (6)

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314(2006).
[CrossRef]

2005 (1)

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005).
[CrossRef]

2004 (2)

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

2002 (1)

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
[CrossRef]

2001 (1)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1998 (1)

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

1996 (1)

J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
[CrossRef]

1995 (1)

1994 (2)

A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
[CrossRef]

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

1993 (1)

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

1991 (2)

F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
[CrossRef]

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys. 70, 3647-3654 (1991).
[CrossRef]

1990 (1)

1989 (1)

G. B. Smith, “Effective medium theory and angular-dispersion of optical-constants in films with oblique columnar structure,” Opt. Commun. 71, 279-284 (1989).
[CrossRef]

1985 (1)

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
[CrossRef]

Arora, K.

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Arya, S. K.

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Bergstein, D. A.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Bohren, F.

D. R. H. Craig and F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boozer, C.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Boukherroub, R.

S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
[CrossRef]

Bradberry, G. W.

F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
[CrossRef]

Brecht, A.

J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
[CrossRef]

Brett, M. J.

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Byun, K. M.

Cabodi, M.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Castel, X.

S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
[CrossRef]

Chaney, S. B.

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

Chen, C.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Chen, Y. W.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Choy, T. C.

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford U. Press, 1999).

Colpo, P.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Cong, S. X.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Craig, D. R. H.

D. R. H. Craig and F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Deeds, J.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Dluhy, R. A.

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

Etheridge, S.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Fainman, Y.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

Finlan, M. F.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
[CrossRef]

Gaylord, T. K.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
[CrossRef]

Gershoni, J. M.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Goldberg, B. B.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Gonzalez, R.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Gu, J. H.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Guan, H. W.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Gupta, B. D.

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

Gupta, G.

G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007).
[CrossRef]

Ha, K. S.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Hall, S.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Han, J. A.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hong, B.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Hong, D. G.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

Irawan, R.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Iwamoto, M.

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Jen, Y. J.

Jiang, S. Y.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Jiao, X.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Jung, J. W.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Jung, S. H.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Kameoka, J.

C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008).
[CrossRef]

Kim, D.

Kim, G.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Kim, H. S.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Kim, S. J.

Kim, Y. M.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Knoesen, A.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
[CrossRef]

Kondoh, J.

G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007).
[CrossRef]

Kurihara, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
[CrossRef]

Ladd, J.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Lee, C. C.

Leung, P. T.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

Lisboa, P.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Liu, D. M.

Liu, L. Y.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Liu, Y. J.

Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).

Londergan, T.

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Lu, H.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Lu, Z. H.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Ma, J. M.

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Malan, G. P.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

Malhotra, B. D.

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

Mannelli, I.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Martinez, G.

A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
[CrossRef]

Martinez, J. L.

A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
[CrossRef]

Mendozagalvan, A.

A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
[CrossRef]

Ming, H.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Mitsas, C. L.

Moharam, M. G.

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
[CrossRef]

Mornet, S.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Nakamura, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
[CrossRef]

Needham, J. W.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Ozkumur, E.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Pandey, M. K.

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

Pang, L.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

Piehler, J.

J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
[CrossRef]

Pollard-Knight, D.

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

Prabhakar, N.

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Rao, R.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Rossi, F.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Sambles, J. R.

F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
[CrossRef]

Schatz, G. C.

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef]

Seshadri, S. R.

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys. 70, 3647-3654 (1991).
[CrossRef]

Shanmukh, S.

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

Sharma, A. K.

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

Shuler, M. L.

Siapkas, D. I.

Singh, H.

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

Smith, G. B.

G. B. Smith, “Theory of angular selective transmittance in oblique columnar thin-films containing metal and voids,” Appl. Opt. 29, 3685-3693 (1990).
[CrossRef]

G. B. Smith, “Effective medium theory and angular-dispersion of optical-constants in films with oblique columnar structure,” Opt. Commun. 71, 279-284 (1989).
[CrossRef]

Smy, T.

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Solanki, P. R.

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Su, C. B.

C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008).
[CrossRef]

Suzuki, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
[CrossRef]

Szunerits, S.

S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Tait, R. N.

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Tan, Y. G.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Taylor, A. D.

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

Tjin, S. C.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Unlu, M. S.

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Valsesia, A.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Verma, R. K.

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

Wang, P.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Yang, F.

F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
[CrossRef]

Yang, X. Y.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Yoon, S. J.

Yuan, G.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Yuan, X. C.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Yuk, J. S.

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

Zhang, D.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Zhang, D. W.

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

Zhang, J.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Zhao, Y. P.

Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

Zou, S. L.

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef]

Adv. Mater. (1)

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. 20, 2352-2358 (2008).
[CrossRef]

Anal. Chem. (1)

J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal. Chem. 68, 139-143(1996).
[CrossRef]

Analyst (Amsterdam) (1)

N. Prabhakar, K. Arora, S. K. Arya, P. R. Solanki, M. Iwamoto, H. Singh, and B. D. Malhotra, “Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance,” Analyst (Amsterdam) 133, 1587-1592 (2008).

Appl. Opt. (3)

Appl. Phys. A (1)

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis,” Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Appl. Phys. B (1)

A. Knoesen, M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals,” Appl. Phys. B 38, 171-178 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91, 123112 (2007).
[CrossRef]

Biomed Microdevices (1)

P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique,” Biomed Microdevices 10, 757-767 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

Curr. Opin. Biotechnol. (1)

C. Boozer, G. Kim, S. X. Cong, H. W. Guan, and T. Londergan, “Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies,” Curr. Opin. Biotechnol. 17, 400-405(2006).
[CrossRef]

Euro. Biophys. J. Biophys. Lett. (1)

J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, “Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays,” Euro. Biophys. J. Biophys. Lett. 35, 469-476 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys. 70, 3647-3654 (1991).
[CrossRef]

J. Chem. Phys. (1)

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606-12612 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A Pure Appl. Opt. (1)

X. C. Yuan, B. Hong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A Pure Appl. Opt. 8, 959-963 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized surface enhanced raman and absorbance spectra of aligned silver nanorod arrays,” J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef]

J. Phys. Chem. C (1)

S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” J. Phys. Chem. C 112, 15813-15817(2008).
[CrossRef]

J. Phys. D (1)

R. K. Verma and B. D. Gupta, “Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D 41, 095106 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Su and J. Kameoka, “Forty-four pass fibre-optic loop for improving the sensitivity of surface plasmon resonance sensors,” Meas. Sci. Technol. 19, 015204 (2008).
[CrossRef]

Opt. Commun. (1)

G. B. Smith, “Effective medium theory and angular-dispersion of optical-constants in films with oblique columnar structure,” Opt. Commun. 71, 279-284 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. At. Nucl. (1)

A. Mendozagalvan, G. Martinez, and J. L. Martinez, “Effective dielectric function modeling of inhomogeneous and anisotropic silver films,” Phys. At. Nucl. 207, 365-371 (1994).
[CrossRef]

Phys. Rev. B (1)

Y. J. Liu and Y. P. Zhao, “Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates,” Phys. Rev. B 78, (2008).

Proc. Natl. Acad. Sci. USA (1)

E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. USA 105, 7988-7992 (2008).
[CrossRef]

Sens. Actuators B (8)

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B 100, 423-431 (2004).
[CrossRef]

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B 86, 49-57 (2002).
[CrossRef]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40-46(2005).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Y. Jiang, “Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor,” Sens. Actuators B 130, 120-128 (2008).
[CrossRef]

G. Gupta and J. Kondoh, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381-388 (2007).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

P. T. Leung, D. Pollard-Knight, G. P. Malan, and M. F. Finlan, “Modeling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor,” Sens. Actuators B 22, 175-180(1994).
[CrossRef]

Supramol. Sci. (1)

J. H. Gu, H. Lu, Y. W. Chen, L. Y. Liu, P. Wang, J. M. Ma, and Z. H. Lu, “Enhancement of the sensitivity of surface plasmon resonance biosensor with colloidal gold labeling technique,” Supramol. Sci. 5, 695-698 (1998).
[CrossRef]

Thin Solid Films (2)

F. Yang, G. W. Bradberry, and J. R. Sambles, “The study of the optical-properties of obliquely evaporated nickel films using IR surface-plasmons,” Thin Solid Films 196, 35-46(1991).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films 226, 196-201 (1993).
[CrossRef]

Other (2)

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford U. Press, 1999).

D. R. H. Craig and F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Schematic of prism-metal film-nanorods-sensing layer model. (b) Incident plane and the plane defined by nanorods and normal direction of interface are all in the x z plane. The x , y , z system has each axis parallel to one of the optical axes defined by the nanorod. (c) Multireflected ray in anisotropic nanorod layer.

Fig. 2
Fig. 2

(a) Representative SEM image of the cross section of Ag nanorods fabricated by OAD. (b) Representative AFM image of the Ag nanorods fabricated by OAD. (c) Bearing curve of the AFM image. (d) Geometry relationship between effective layer thickness d e and tilting angle β, length of nanorod l, and diameter of nanorod D.

Fig. 3
Fig. 3

(a) Typical nanorod-mediated SPR curves with d f = 40 nm and D = 30 nm at (a)  n = 1.00 and (b)  n = 1.33 .

Fig. 4
Fig. 4

(a) Reflectance minimum R m , (b) SPR angle θ r , and (c) SPR curve width w as a function of length of nanorod l at n = 1.00 . (d) Reflectance minimum R m , (e) SPR angle θ r , and (f) SPR curve width w as a function of length of nanorod l at n = 1.33 .

Fig. 5
Fig. 5

(a) Reflectance minimum R m and (b) SPR curve width w as a function of length of nanorod l at different film thickness d f = 30 , 40, 50 nm and diameter of nanorod D = 5 , 10, 30 nm .

Fig. 6
Fig. 6

Dynamic range of nanorod mediated SPR sensor with d f = 40 nm at fixed diameter of nanorod (a)  D = 5 nm , (b)  D = 10 nm , (c)  D = 30 nm . (d) Typical dynamic range at a fixed length of nanorod l = 20 nm .

Fig. 7
Fig. 7

Sensitivity s of nanorod-mediated SPR sensor with d f = 40 nm and D = 5 , 10, 30 nm (a) from n = 1.00 to n = 1.05 and (b) from n = 1.30 to n = 1.34 .

Fig. 8
Fig. 8

(a) Sensitivity comparison between nanorod-mediated SPR sensor and conventional SPR sensor, and (b) the corresponding SPR curves from n = 1.00 to n = 1.05 . The refractive index of the prism is 1.51.

Fig. 9
Fig. 9

(a) Sensitivity comparison between the nanorod-mediated SPR sensor and the conventional SPR sensor, and (b) the corresponding SPR curves from n = 1.30 to n = 1.34 . The refractive index of the prism is 1.51.

Fig. 10
Fig. 10

SPR shift comparison between the structure with d f = 50 nm , D = 10 nm , l = 10 nm and the Ag film with a thickness of 50 nm from n = 1.45 to n = 1.46 . The refractive index of the prism is 1.78.

Fig. 11
Fig. 11

SEM images of Ag nanorods with a nominal thickness d of (a)  200 nm , (b)  300 nm , (c)  600 nm , and (d)  800 nm . The cross sections have been inserted on top of each image and have the same scale bar.

Fig. 12
Fig. 12

Experimental setup for SPR measurements.

Fig. 13
Fig. 13

(a) Measurement orientations of the Ag nanorods/Ag film sample. (b) SPR measurements in different orientations for Ag nanorods 200 nm /Ag film 40 nm and Ag nanorods 500 nm /Ag film 40 nm samples. (c) SPR resonance angle versus different locations for each orientation.

Fig. 14
Fig. 14

Experimental SPR reflectance curves of (a) Ag film 50 nm /Ti film 1 nm in air, (b) Ag film 50 nm /Ti film 1 nm in water, and (c) Ag nanorods 200 nm /Ag film 50 nm /Ti film 1 nm in air.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

R = | r 1234 | 2 ,
r 1234 = r 12 + r 234 exp ( 2 i k 2 z d f ) 1 + r 12 r 234 exp ( 2 i k 2 z d f ) ,
r 234 = r 23 + r 34 exp ( 2 i k 3 z d e ) 1 + r 23 r 34 exp ( 2 i k 3 z d e ) ,
r 12 = k 1 z ε 2 k 2 z ε 1 k 1 z ε 2 + k 2 z ε 1 ,
r 23 = k 2 z ε 3 k 3 z ε 2 k 2 z ε 3 + k 3 z ε 2 ,
r 34 = k 3 z ε 4 k 4 z ε 3 k 3 z ε 4 + k 4 z ε 3 ,
k j z = ε j ω 2 c 2 k x 2 for     j = 1 , 2 , 3 , 4 ,
k x = ε 1 ω c sin θ ,
ω = 2 π c λ ,
ε 3 = ( ε x 0 0 0 ε y 0 0 0 ε z )
ε 3 = ( ε x x ε x y ε x z ε y x ε y y ε y z ε z x ε z y ε z z ) = ( ε x cos β 2 + ε z sin β 2 0 ε x sin β cos β + ε z sin β cos β 0 ε y 0 - ε x ' sin β cos β + ε z ' sin β cos β 0 ε x sin β 2 + ε z cos β 2 ) .
k 3 z ± = k x ε x z ± ε x ε z ( ω 2 / c 2 ) ε z z k x 2 ε z z ,
ε 3 ± = ε 1 sin θ 2 + [ ε 1 sin θ 2 ε x z ± ε x ε z ε z z ε 1 sin θ 2 ε z z ] 2 .
r 234 = r 23 A + t 23 A r 34 B t 32 C exp [ i ( k 3 z + k 3 z ) d e ] 1 r 32 C r 34 B exp [ i ( k 3 z + k 3 z ) d e ] ,
r 23 A = k 2 z ε 3 + k 3 z + ε 2 k 2 z ε 3 + + k 3 z + ε 2 ,
t 23 A = ε 3 + ε 2 2 k 2 z ε 2 k 2 z ε 3 + + k 3 z + ε 2 ,
r 34 B = ε 3 ε 3 + k 3 z + ε 4 k 4 z ε 3 + k 3 z ε 4 + k 4 z ε 3 ,
r 32 C = ε 3 + ε 3 k 3 z ε 2 k 2 z ε 3 k 3 z + ε 2 + k 2 z ε 3 + ,
t 32 C = ε 2 ε 3 k 3 z ε 3 + + k 3 z + ε 3 k 3 z + ε 2 + k 2 z ε 3 + .
ε i ε m ε m + L i ( ε i ε m ) = ( 1 f m ) [ ε s ε m ε m + L i ( ε s ε m ) ] for     i = x , y , z ,
L z = 1 e 2 e 2 [ 1 2 e ln ( 1 + e 1 e ) 1 ] ,
e = 1 r 2 ( prolate spheroid ) ,
L z = g 2 e 2 ( π 2 tan g 1 ) g 2 2 ,
g = 1 e 2 e 2 ( oblate spheroid ) ,
L z = 1 3 ( sphere ) ,
L x = L y = 1 2 ( 1 L z ) ,
ε 2 = ε 2 ω p 2 ω ( ω + i ω τ ) ,
d e = 2 B ( A x + D l 4 B x 2 ) ,
A = 1 4 ( l 2 D 2 ) sin β cos β ,
B = 1 4 ( D 2 cos β 2 + l 2 sin β 2 ) ,
x = A B A 2 + D 2 l 2 16 .

Metrics