Abstract

Interference fringe fields and the visible flame field of a 50mm diameter n-hexane tank flame were simultaneously measured using a real-time holographic interferometer with special image optics. An inhouse developed image processing method was applied to the holographic images to calculate the interference fringe order profiles. The effect of species composition on temperature profiles was studied by considering three different cases: using the measured species profiles, using an overall reaction mecha nism based on stoichiometric combustion, and by assuming that the flame consists of hot air. The results show that species composition has the largest effect on temperature fields in regions near the flame axis at lower axial distances. In the region of the plume zone, the flame consists primarily of hot air due to the increase in total entrained air.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
    [CrossRef]
  2. T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
    [CrossRef]
  3. L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
    [CrossRef]
  4. B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.
  5. J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
    [CrossRef]
  6. M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
    [CrossRef]
  7. S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
    [CrossRef]
  8. R. A. Dobbins, “Soot inception temperature and the carbonization rate of precursor particles,” Combust. Flame 130, 204-214 (2002).
    [CrossRef]
  9. D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007).
    [CrossRef]
  10. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
    [CrossRef]
  11. J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007).
    [CrossRef]
  12. C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999).
    [CrossRef]
  13. S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
    [CrossRef]
  14. G. P. Montgomery and D. L. Reuss, “Effects of refraction on axisymmetric flame temperatures measured by holographic interferometry,” Appl. Opt. 21, 1373-1380 (1982).
    [CrossRef] [PubMed]
  15. C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
    [CrossRef]
  16. J. D. Posner and D. Dunn-Rankin, “Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms,” Appl. Opt. 42, 952-959 (2003).
    [CrossRef] [PubMed]
  17. T. Konishi, A. Ito, Y. Kudo, A. Narumi, K. Saito, J. Baker, and P. M. Struk, “Simultaneous measurement of temperature and chemical species concentrations with a holographic interferometer and infrared absorption,” Appl. Opt. 45, 5725-5732(2006).
    [CrossRef] [PubMed]
  18. P. A. Ross and M. M. El-Wakil, “A two-wavelength interferometric technique for the study of vaporization and combustion of fuels,” in AIIA Progress in Astronautics and Rocketry: Liquid Rockets and Propulsion, L. E. Bollinger, M. Goldsmith, and A. W. Lemmon, Jr., eds. (Academic, 1960), pp. 265-298.
  19. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).
  20. W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds. (Academic, 1970), Vol. 6, pp. 267-274.
    [CrossRef]
  21. C. M. Vest, “Interferometry of strongly refracting axisymmetric objects,” Appl. Opt. 14, 1601-1606 (1975).
    [CrossRef] [PubMed]
  22. R. Lucas, “Holografische Synchroninterferometrie zur Untersuchung von Tankflammenfeldern und ihren kohärenten Strukturen,” Ph.D. thesis (University of Stuttgart, 1981).
  23. D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207-219 (1983).
    [CrossRef]
  24. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  25. W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).
  26. A. F. Ibarreta and C.-J. Sung, “Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry,” Appl. Opt. 44, 3565-3575(2005).
    [CrossRef] [PubMed]
  27. M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
    [CrossRef]
  28. R. Fristrom and A. Westenberg, Flame Structure (McGraw-Hill, 1965).
  29. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).
  30. R. A. Jones and P. L. Kadakia, “An automated interferogram analysis technique,” Appl. Opt. 7, 1477-1482 (1968).
    [CrossRef] [PubMed]
  31. W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
    [CrossRef]
  32. A. Walcher, “Nicht-isothermer Stofftransport und Reaktionsräume in Tankflammen,” Ph.D. thesis (University of Stuttgart, 1982).
  33. W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

2009 (2)

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

2008 (1)

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

2007 (2)

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007).
[CrossRef]

J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007).
[CrossRef]

2006 (2)

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

T. Konishi, A. Ito, Y. Kudo, A. Narumi, K. Saito, J. Baker, and P. M. Struk, “Simultaneous measurement of temperature and chemical species concentrations with a holographic interferometer and infrared absorption,” Appl. Opt. 45, 5725-5732(2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (1)

R. A. Dobbins, “Soot inception temperature and the carbonization rate of precursor particles,” Combust. Flame 130, 204-214 (2002).
[CrossRef]

2000 (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
[CrossRef]

1999 (1)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999).
[CrossRef]

1996 (1)

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

1995 (1)

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

1992 (2)

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
[CrossRef]

C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
[CrossRef]

1983 (1)

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207-219 (1983).
[CrossRef]

1982 (1)

1981 (1)

W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
[CrossRef]

1978 (1)

W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

1975 (1)

1968 (1)

Arnold, B.

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Audouin, L.

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

Baker, J.

Banhardt, V.

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Bieller, V.

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Brötz, W.

W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

Chang, K. C.

C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
[CrossRef]

Chen, C. C.

C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
[CrossRef]

Dobbins, R. A.

R. A. Dobbins, “Soot inception temperature and the carbonization rate of precursor particles,” Combust. Flame 130, 204-214 (2002).
[CrossRef]

Doi, J.

J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007).
[CrossRef]

Dunn-Rankin, D.

Eddings, E. G.

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).

El-Wakil, M. M.

P. A. Ross and M. M. El-Wakil, “A two-wavelength interferometric technique for the study of vaporization and combustion of fuels,” in AIIA Progress in Astronautics and Rocketry: Liquid Rockets and Propulsion, L. E. Bollinger, M. Goldsmith, and A. W. Lemmon, Jr., eds. (Academic, 1960), pp. 265-298.

Frank, J. H.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Fristrom, R.

R. Fristrom and A. Westenberg, Flame Structure (McGraw-Hill, 1965).

Fujiwara, T.

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
[CrossRef]

Gardiner, W. C.

W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
[CrossRef]

Gawlowski, M.

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

Giammartini, S.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).

Grigull, U.

W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds. (Academic, 1970), Vol. 6, pp. 267-274.
[CrossRef]

Guj, G.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
[CrossRef]

Hailwood, M.

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

Hauf, W.

W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds. (Academic, 1970), Vol. 6, pp. 267-274.
[CrossRef]

Henriksen, T. L.

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

Hidaka, Y.

W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
[CrossRef]

Ibarreta, A. F.

Ito, A.

Jones, R. A.

Kadakia, P. L.

Kasper, H.

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Kaufmann, M.

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Kolb, G.

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

Konishi, T.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

Kudo, Y.

Lai, W. Z.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
[CrossRef]

Leung, C. W.

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

Lin, C. C.

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

Lin, P.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Long, M. B.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Lucas, R.

R. Lucas, “Holografische Synchroninterferometrie zur Untersuchung von Tankflammenfeldern und ihren kohärenten Strukturen,” Ph.D. thesis (University of Stuttgart, 1981).

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Mayinger, F.

W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).

Montgomery, G. P.

Most, J. M.

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

Narumi, A.

Nathan, G. J.

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

Nirala, A. K.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999).
[CrossRef]

Posner, J. D.

Probert, S. D.

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

Qi, J. A.

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

Reuss, D. L.

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207-219 (1983).
[CrossRef]

G. P. Montgomery and D. L. Reuss, “Effects of refraction on axisymmetric flame temperatures measured by holographic interferometry,” Appl. Opt. 21, 1373-1380 (1982).
[CrossRef] [PubMed]

Ring, T. A.

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

Ross, P. A.

P. A. Ross and M. M. El-Wakil, “A two-wavelength interferometric technique for the study of vaporization and combustion of fuels,” in AIIA Progress in Astronautics and Rocketry: Liquid Rockets and Propulsion, L. E. Bollinger, M. Goldsmith, and A. W. Lemmon, Jr., eds. (Academic, 1960), pp. 265-298.

Saito, K.

Sato, S.

J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007).
[CrossRef]

Schalau, B.

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

Schönbucher, A.

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Shakher, C.

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999).
[CrossRef]

Smooke, M. D.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Stella, A.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
[CrossRef]

Struk, P. M.

Sung, C.-J.

Tanzawa, T.

W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
[CrossRef]

Tieng, S. M.

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
[CrossRef]

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
[CrossRef]

Torero, J. L.

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

Vela, I.

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

Vest, C. M.

Walcher, A.

W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

A. Walcher, “Nicht-isothermer Stofftransport und Reaktionsräume in Tankflammen,” Ph.D. thesis (University of Stuttgart, 1982).

Wang, Y. C.

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

Westenberg, A.

R. Fristrom and A. Westenberg, Flame Structure (McGraw-Hill, 1965).

Wong, W. O.

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).

Xu, Y.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Zhang, D. Y.

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007).
[CrossRef]

Zhou, H. C.

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007).
[CrossRef]

Zurn, R. M.

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

Appl. Energy (1)

J. A. Qi, C. W. Leung, W. O. Wong, and S. D. Probert, “Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry,” Appl. Energy 83, 1307-1316 (2006).
[CrossRef]

Appl. Opt. (6)

Chem. Eng. Technol. (2)

M. Gawlowski, M. Hailwood, I. Vela, and A. Schönbucher, “Deterministic and probabilistic estimation of appropriate distances: motivation for considering the consequences for industrial sites,” Chem. Eng. Technol. 32, 182-198 (2009).
[CrossRef]

M. Hailwood, M. Gawlowski, B. Schalau, and A. Schönbucher, “Conclusions drawn from the Buncefield and Naples incidents regarding the utilization of consequence models,” Chem. Eng. Technol. 32, 207-233 (2009).
[CrossRef]

Combust. Flame (3)

R. A. Dobbins, “Soot inception temperature and the carbonization rate of precursor particles,” Combust. Flame 130, 204-214 (2002).
[CrossRef]

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207-219 (1983).
[CrossRef]

W. C. Gardiner, Y. Hidaka, and T. Tanzawa, “Refractivity of combustion gases,” Combust. Flame 40, 213-219 (1981).
[CrossRef]

Combust. Sci. Technol. (1)

T. L. Henriksen, T. A. Ring, E. G. Eddings, and G. J. Nathan, “Puffing frequency and soot extinction correlation in JP-8 and heptanes pool fires,” Combust. Sci. Technol. 180, 699-712(2008).
[CrossRef]

Erdöl-Kohle-Erdgas-Petrochem. (1)

W. Brötz, A. Walcher, and A. Schönbucher, “Gaschromatographische Analyse der Flammengase einer n-Hexan-Tankflamme,” Erdöl-Kohle-Erdgas-Petrochem. 31, 347-353 (1978).

Exp. Fluids (1)

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1-12 (2000).
[CrossRef]

Fire Safety J. (1)

L. Audouin, G. Kolb, J. L. Torero, and J. M. Most, “Average centreline temperatures of a buoyant pool fire obtained by image processing of video recordings,” Fire Safety J. 24, 167-187 (1995).
[CrossRef]

Fuel (1)

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552-1559 (2007).
[CrossRef]

Meas. Sci. Technol. (2)

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179-1187 (1992).
[CrossRef]

S. M. Tieng, C. C. Lin, Y. C. Wang, and T. Fujiwara, “Effect of composition distribution on holographic temperature measurement of a diffuse flame,” Meas. Sci. Technol. 7, 477-488(1996).
[CrossRef]

Opt. Eng. (2)

J. Doi and S. Sato, “Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using multidirectional interferometer,” Opt. Eng. 46, 015601 (2007).
[CrossRef]

C. C. Chen, K. C. Chang, and S. M. Tieng, “Effect of composition change on temperature measurements in a premixed flame by holographic interferometry,” Opt. Eng. 31, 353-362(1992).
[CrossRef]

Opt. Lasers Eng. (1)

C. Shakher and A. K. Nirala, “A review on refractive index and temperature profile measurements using laser-based interferometric techniques,” Opt. Lasers Eng. 31, 455-491(1999).
[CrossRef]

Other (11)

A. Walcher, “Nicht-isothermer Stofftransport und Reaktionsräume in Tankflammen,” Ph.D. thesis (University of Stuttgart, 1982).

P. A. Ross and M. M. El-Wakil, “A two-wavelength interferometric technique for the study of vaporization and combustion of fuels,” in AIIA Progress in Astronautics and Rocketry: Liquid Rockets and Propulsion, L. E. Bollinger, M. Goldsmith, and A. W. Lemmon, Jr., eds. (Academic, 1960), pp. 265-298.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005).

W. Hauf and U. Grigull, “Optical methods in heat transfer,” in Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds. (Academic, 1970), Vol. 6, pp. 267-274.
[CrossRef]

R. Lucas, “Holografische Synchroninterferometrie zur Untersuchung von Tankflammenfeldern und ihren kohärenten Strukturen,” Ph.D. thesis (University of Stuttgart, 1981).

C. M. Vest, Holographic Interferometry (Wiley, 1979).

W. Hauf, U. Grigull, and F. Mayinger, Optische Meßverfahren der Wärme- und Stoffübertragung (Springer, 1991).

M. D. Smooke, Y. Xu, R. M. Zurn, P. Lin, J. H. Frank, and M. B. Long, “Computational and experimental study of OH and CH radicals in axisymmetric laminar diffusion flames,” in Proceedings of 24th Symposium (Int.) on Combustion (The Combustion Institute, 1992), pp. 813-821.
[CrossRef]

R. Fristrom and A. Westenberg, Flame Structure (McGraw-Hill, 1965).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).

B. Arnold, V. Banhardt, V. Bieller, H. Kasper, M. Kaufmann, R. Lucas, and A. Schönbucher, “Simultaneous observation of organized density structures and the visible field in pool fires,” in Proceedings of 21th Symposium (Int.) on Combustion (The Combustion Institute, 1986), pp. 83-92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Interferogram of an n-hexane tank flame ( d = 50 mm ) superimposed simultaneously with the visible luminous flame contour showing also different flow regions, e.g., density sources and sinks and thermal boundary layer.

Fig. 2
Fig. 2

(a) High-speed holographic real-time interferometer (Mach–Zehnder) with a 250 mm beam expanding including the image optics, according to [4, 22]. (b) Optical setup for the simultaneous recording of the intereference fringe field and the visible flame field ( f S , focal length; g S , g F , object distance for the interferogram, object distance of the flame, respectively; b S , b F , b I , image length of the recording optics, flame, interferogram, respectively).

Fig. 3
Fig. 3

Experimental setup for the GC species composition measurements, according to [32, 33].

Fig. 4
Fig. 4

Profiles of radial species volume fractions and equivalence ratio at an axial distance of (a)  x = 20 mm , (b)  x = 50 mm , and (c)  x = 150 mm .

Fig. 5
Fig. 5

Profiles of axial species volume fractions of (a) fuel and ambient air N 2 / O 2 and equivalence ratio and (b) major combustion products H 2 O , CO 2 , and CO.

Fig. 6
Fig. 6

Profiles of (a) radial specific refraction at different axial distances and (b) axial specific refraction.

Fig. 7
Fig. 7

Profiles of (a) time-averaged radial fringe orders and (b) time-averaged and spatial-averaged radial fringe orders.

Fig. 8
Fig. 8

Profiles of time-averaged radial refractive index at x = 20 mm and x = 150 mm .

Fig. 9
Fig. 9

Profiles of time-averaged radial temperatures at (a)  x = 20 mm , (b)  x = 50 mm , and (c)  x = 150 mm by considering N m calculated with the measured species composition (Case 1), an average value of stoichiometric combustion (Case 2) and a constant value of air (Case 3).

Tables (1)

Tables Icon

Table 1 Density ρ i , Molar Mass M i , and Specific Refraction N i of the Measured Species i under Standard Conditions ( p 0 = 101000 Pa , T 0 = 273 K ) [31]

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Φ = ( γ ˜ air / γ ˜ f ) s γ ˜ air / γ ˜ f ,
S ( x , y , t ) λ = z ( y ) z ( y ) [ n m ( x , y , z , t ) n a ] d z ,
n m ( r , x , t ) n a = λ π r R S ( x , y , t ) / y y 2 r 2 d y ,
ρ m ( r , x , t ) = 2 3 [ n m ( r , x , t ) 1 ] 1 N ¯ m ,
N ¯ m ( r , x ) = i γ ¯ i ( r , x ) N i , 0 i γ ¯ i ( r , x ) ,
T m ( r , x , t ) = 1 ρ m ( r , x , t ) i γ ¯ i ( r , x ) ρ i , 0 i γ ¯ i ( r , x ) T 0
T m ( r , x , t ) = 3 / 2 λ π r R S ( x , y , t ) / y y 2 r 2 d y + n a 1 i γ ¯ i ( r , x ) ρ i , 0 i γ ¯ i ( r , x ) N i , 0 [ i γ ¯ i ( r , x ) ] 2 T 0 ,
T m ( r , x , t ) = 3 / 2 ρ i , 0 N i , 0 T 0 λ π r R S ( x , y , t ) / y y 2 r 2 d y + n a 1 ,
| Δ T m | = T m 2 3 / 2 ρ i , 0 N i , 0 T 0 | Δ δ | .
η = n m ( r , x , t ) n a δ δ a .
η η ref δ δ ref ,
δ = ( n 1 ) η η ref + δ ref ,
| Δ δ | = | Δ ( η η ref ) | + | Δ δ ref | = | Δ η | + | Δ δ ref | ,
| Δ T m | = T m 2 3 / 2 ρ i , 0 N i , 0 T 0 | Δ η | Δ T m 1 + ( T m T ref ) 2 | Δ T ref | Δ T m 2 ,
γ ¯ i = γ ¯ v , i M ˜ i i γ ¯ v , i M ˜ i ,
Δ T ¯ = T ¯ m T ¯ t = ε P t σ d w ( T ¯ t 4 T a 4 ) 2 λ m ,
Δ r = Δ L / 2.
Δ L = L s / P d ,
L s = F w .
Δ r = F w / ( 2 P d λ ) .
C 6 H 14 + 9.5 ( O 2 + 3.76 N 2 ) 6 CO 2 + 7 H 2 O + 35.72 N 2 .
N ¯ m , R = 1.668 × 10 4 m 3 / kg .
N ¯ m , P = 1.641 × 10 4 m 3 / kg .

Metrics