Abstract

The speed of most parallel-aligned liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) is limited to the video rate of their drivers, which is a limitation for high-speed applications. However, the LCoS SLM presented here has a driver allowing a frequency range of up to 1011Hz. Using the static phase modulation characterization and the static lookup table (LUT), the phase modulation characteri zation versus frequency shows that the SLM can operate at around 130Hz or even higher for small phase changes and at 32Hz for extreme phase changes. A dynamic calibration is carried out, and we propose a method allowing an increase of the frame rate while maintaining a maximum phase modulation of 2π. Experimental results of dynamic diffractive optical elements displayed on the SLM at a frame rate of 205Hz show that the dynamic LUT improves the reconstruction quality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Boulder Nonlinear Systems, Inc; Products (BNS, 2008), http://www.bnonlinear.com.
  2. Hamamatsu Spatial Light Modulator (Hamamatsu, 2008), http://www.hamamatsu.com.
  3. Holoeye Photonics AG & Holoeye Corporation (2008), http://www.holoeye.com.
  4. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24, 2940-2947 (2007).
    [CrossRef]
  5. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16, 2597-2603(2008).
    [CrossRef]
  6. A. V. Kuzmenko and P. V. Yezhov, “Iterative algorithms for off-axis double-phase computer-generated holograms implemented with phase-only spatial light modulators,” Appl. Opt. 46, 7392-7400 (2007).
    [CrossRef]
  7. G. Milewski, D. Engstrom, and J. Bengtsson, “Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators,” Appl. Opt. 46, 95-105 (2007).
    [CrossRef]
  8. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243-2250 (2004).
    [CrossRef]
  9. W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).
  10. B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
    [CrossRef]
  11. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994).
    [CrossRef]
  12. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937-945 (1998).
    [CrossRef]
  13. J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
    [CrossRef]
  14. V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
    [CrossRef]
  15. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
    [CrossRef]
  16. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400-6406(2004).
    [CrossRef]
  17. M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
    [CrossRef]
  18. N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
    [CrossRef]
  19. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667-5679 (2007).
    [CrossRef]
  20. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007).
    [CrossRef]
  21. S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
    [CrossRef]
  22. D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775-2784 (1994).
    [CrossRef]
  23. T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
    [CrossRef]
  24. D. J. Cho, S. T. Thurman, J. T. Donner, and G. M. Morris, “Characteristics of a 128×128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23 (12), 969-971 (1998).
    [CrossRef]
  25. S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).
  26. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display,” Appl. Opt. 47, 4267-4274(2008).
    [CrossRef]
  27. A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711-16722 (2008).
    [CrossRef]
  28. Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
    [CrossRef]
  29. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058-1065 (1988).
    [CrossRef]

2008 (4)

2007 (6)

2006 (1)

S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).

2005 (2)

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).

2004 (4)

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
[CrossRef]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243-2250 (2004).
[CrossRef]

X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43, 6400-6406(2004).
[CrossRef]

2003 (1)

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

1999 (1)

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

1998 (2)

1994 (3)

D. J. McKnight, K. M. Johnson, and R. A. Serati, “256×256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 33, 2775-2784 (1994).
[CrossRef]

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
[CrossRef]

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994).
[CrossRef]

1990 (1)

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

1988 (1)

Allison, D. B.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Ambs, P.

Bauchert, K.

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
[CrossRef]

Bengtsson, J.

Bernet, S.

Bock, M.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Bryngdahl, O.

Campos, J.

Cho, D. J.

Cohn, R. W.

Das, S. K.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Davis, J. A.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937-945 (1998).
[CrossRef]

D'Nelly, K. G.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Donner, J. T.

Duran, V.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

Engstrom, D.

Ewing, T.

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
[CrossRef]

Fernández, E.

Frumker, E.

Fürhapter, S.

Grunwald, R.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Harriman, J.

S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).

Harriman, J. L.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Hart, N. W.

N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Iemmi, C.

Jaroszewicz, Z.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

Jesacher, A.

Johnson, K. M.

Kohler, C.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).

Kuzmenko, A. V.

Lancis, J.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

Liesener, J.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).

Linnenberger, A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

Lizana, A.

Lu, G.

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
[CrossRef]

Lu, K.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994).
[CrossRef]

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

Márquez, A.

Maurer, C.

McKnight, D. J.

Milewski, G.

Millán, M. S.

Moreno, I.

Morris, G. M.

Mughal, O.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

Osten, S.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Osten, W.

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).

Otón, J.

Pérez-Cabré, E.

Ritsch-Marte, M.

Saleh, B. E. A.

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

Schulz, T. J.

N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Schwaighofer, A.

Serati, R. A.

Serati, S.

S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
[CrossRef]

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

Serati, S. A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Sergeyev, A.

N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Silberberg, Y.

Soutar, C.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994).
[CrossRef]

Staudt, P.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Stibenz, G.

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

Tajahuerce, E.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

Thurman, S. T.

Tsai, P.

Wilson, M. L.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Wyrowski, F.

Xia, X.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

Xun, X.

Yezhov, P. V.

Yu, F. T. S.

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
[CrossRef]

Yzuel, M. J.

Zhang, Z.

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett. 92, 151105-151103 (2008).
[CrossRef]

J. Appl. Phys. (1)

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Univocal determination of the cell parameters of a twisted nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (5)

Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions,” Opt. Eng. 33, 3018-3022 (1994).
[CrossRef]

N. W. Hart, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704-2712 (1994).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Pura Apl. (1)

W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology,” Opt. Pura Apl. 38, 71-81 (2005).

Proc. SPIE (4)

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

S. Serati, X. Xia, O. Mughal, and A. Linnenberger, “High-resolution phase-only spatial light modulators with submillisecond response,” Proc. SPIE 5106, 138-145(2003).
[CrossRef]

T. Ewing, S. Serati, and K. Bauchert, “Optical correlator using four kilohertz analog spatial light modulator,” Proc. SPIE 5437, 123-133 (2004).
[CrossRef]

S. Serati and J. Harriman, “Spatial light modulators considerations for beam control in optical manipulation applications,” Proc. SPIE 6326, 63262W (2006).

Other (3)

Boulder Nonlinear Systems, Inc; Products (BNS, 2008), http://www.bnonlinear.com.

Hamamatsu Spatial Light Modulator (Hamamatsu, 2008), http://www.hamamatsu.com.

Holoeye Photonics AG & Holoeye Corporation (2008), http://www.holoeye.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Setup for the calibration of the BNS SLM using the Ronchi grating method proposed by Zhang [28]. The gray level values of the grid are N v and N ref .

Fig. 2
Fig. 2

Experimental measurements of the phase shift generated by the nematic LC SLM for different BNS index levels when no LUT is applied. (a) Intensity of the first diffraction order (Y axis) when a Ronchi grating with variable BNS index levels from 0 to 255 (X axis) is displayed on the SLM. (b) Phase shift computed from the data of curve (a). A phase modulation range of 2 π is used to fix a BNS index level range of [0, 87] and from it, to generate a LUT.

Fig. 3
Fig. 3

Implementation of a multi-LUT. Gray-level value giving a 2 π phase shift for the different regions of the SLM.

Fig. 4
Fig. 4

Interferogram of the modulator: (a) parallel reference mirror, without compensation of wavefront distortion; (b) tilted reference mirror, without compensation; (c) parallel mirror, with compensation of wavefront distortion; and (d) tilted mirror, with compensation.

Fig. 5
Fig. 5

Intensity curves of the first diffraction order for a binary phase grating that changes a small increment with increasing frame rate.

Fig. 6
Fig. 6

Intensities of the first diffraction order when two phase gratings are alternately addressed to the SLM for a time t each at increasing rates (in comparison with the ideal T-shaped plot). The frame rate (in hertz) is equal to 1 / t , with t in seconds.

Fig. 7
Fig. 7

(a) Scheme of the temporal display of phase gratings for dynamic calibration, with T the period, and n = { 0 255 } . (b) Intensity curves for frame rates in the range of [ 33 , 1010 ] Hz when the variable gray level N v is interlaced with the reference gray level ( N ref ) using a LUT in the range [0, 87].

Fig. 8
Fig. 8

(a) Phase modulation used to generate a global dynamic LUT at 63 Hz and (b) dynamic multi-LUT value of the gray level giving a 2 π phase shift for the different regions of the SLM.

Fig. 9
Fig. 9

Intensity curves for frame rates in the range of [ 33 , 1010 ] Hz when the variable gray level N v is interlaced with reference gray level using an extended LUT [128, 255] (dynamic LUT).

Fig. 10
Fig. 10

(a) Optical reconstruction of a time-varying DOE: two holograms corresponding to the UPC logo and a plain background are alternatively addressed to the SLM. Different static and dynamic LUTs are used. (b) The same for a steady DOE (the hologram of the UPC logo alone).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( Δ ϕ ) [ 1 cos Δ ϕ ( N ) ] .

Metrics