Abstract

The refractivity of wild-type bacteriorhodopsin (bRWT) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390840nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bRWT as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bRWT.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Luecke, “Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump,” Biochim. Biophys. Acta 1460, 133-156 (2000).
    [CrossRef]
  2. L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
    [CrossRef]
  3. K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).
  4. B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30, 3060-3062 (2005).
    [CrossRef]
  5. J. Joseph, F. J. Aranda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, “Optical Fourier processing using photoinduced dichroism in a bacteriorhodopsin film,” Opt. Lett. 21, 1499-1501 (1996).
    [CrossRef]
  6. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).
  7. D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992).
    [CrossRef]
  8. C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).
  9. A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
    [CrossRef]
  10. K. Clays, S. Van Elshocht, M. Chi, E. Lepoudre, and A. Persoons, “Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,” J. Opt. Soc. Am. B 18, 1474-1483 (2001).
    [CrossRef]
  11. G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983).
    [CrossRef]
  12. P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
    [CrossRef]
  13. Q. W. Song, C. P. Zhang, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775-777 (1993).
    [CrossRef]
  14. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117-1119 (1990)
    [CrossRef]
  15. A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
    [CrossRef]
  16. P. Mitchell, “Vectorial chemistry and molecular mechanics of chemiosmotic coupling: power transmission by proticity,” Biochem. Soc. Trans. 4, 399-430 (1976).
  17. Y. Huang, S.-T. Wu, and Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895-906 (2004).
    [CrossRef]
  18. R. K. Banyal and B. R. Prasad, “High-contrast, all-optical switching in bacteriorhodopsin films,” Appl. Opt. 44, 5497-5503 (2005).
    [CrossRef]
  19. A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
    [CrossRef]
  20. C. P. Zhang, Q. W. Song, C. Y. Ku, R. B. Gross, and R. R. Birge, “Determination of the refractive index of a bacteriorhodopsin film,” Opt. Lett. 19, 1409-1411 (1994).
    [CrossRef]
  21. Q. W. Son, C.-Y. Ku, C. Zhang, R. B. Gross, R. R. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797-803(1995).
    [CrossRef]
  22. I. Z. Kozma, P. Krok, and E. Riedle, “Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet,” J. Opt. Soc. Am. B 22, 1479-1485 (2005).
    [CrossRef]
  23. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45, 2838-2842 (2006).
    [CrossRef]
  24. L. E. Nielsen, Predicting the Properties of Mixture (Dekker, 1978).
  25. D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160-168(1990).
  26. E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).
  27. G. Chen, Y. Yuan, C. Zhang, G. Yang, J. G. Tian, T. Xu, and Q. W. Song, “All-optical time-delay relay based on a bacteriorhodopsin film,” Opt. Lett. 31, 1531-1533 (2006).
    [CrossRef]
  28. C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
    [CrossRef]
  29. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47, 4856-4863 (2008).
    [CrossRef]
  30. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007).
    [CrossRef]

2008 (1)

2007 (2)

M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811-3820 (2007).
[CrossRef]

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

2006 (5)

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
[CrossRef]

M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45, 2838-2842 (2006).
[CrossRef]

G. Chen, Y. Yuan, C. Zhang, G. Yang, J. G. Tian, T. Xu, and Q. W. Song, “All-optical time-delay relay based on a bacteriorhodopsin film,” Opt. Lett. 31, 1531-1533 (2006).
[CrossRef]

2005 (3)

2004 (1)

2002 (2)

C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

2001 (1)

2000 (3)

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).

H. Luecke, “Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump,” Biochim. Biophys. Acta 1460, 133-156 (2000).
[CrossRef]

1997 (1)

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1993 (1)

1992 (1)

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992).
[CrossRef]

1990 (2)

1985 (1)

A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
[CrossRef]

1983 (1)

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983).
[CrossRef]

1976 (1)

P. Mitchell, “Vectorial chemistry and molecular mechanics of chemiosmotic coupling: power transmission by proticity,” Biochem. Soc. Trans. 4, 399-430 (1976).

Akkara, J. A.

Aranda, F. J.

Balashov, S.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Bálint, Z.

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

Banyal, R. K.

Barmenkov, Y. O.

C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Birge, R.

Birge, R. R.

Börzsönyi, A.

Brown, L. S.

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

Bugaychuk, S.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Burykin, N.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Chen, G.

Chi, M.

Clays, K.

Daimon, M.

Dér, A.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
[CrossRef]

Dyukova, T.

E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).

Ebrey, T.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Fábián, L.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Fischer, B.

Fischer, T.

Friebel, M.

Garab, G.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
[CrossRef]

Gergely, C.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
[CrossRef]

Gross, R. B.

Hampp, N.

B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30, 3060-3062 (2005).
[CrossRef]

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992).
[CrossRef]

Hargittai, P.

A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
[CrossRef]

Heiner, Z.

Huang, Y.

Jaaskelainen, T.

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Joseph, J.

Kalashnikov, M. P.

Keszthelyi, L.

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983).
[CrossRef]

Kiryanov, A. V.

C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Korchemskaya, E.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).

Kovács, A. P.

Kozma, I. Z.

Krok, P.

Ku, C. Y.

Ku, C.-Y.

Lanyi, J. K.

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

Lei, M.

Lepoudre, E.

Leppanen, V.-P.

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Lerma, J. R.

D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160-168(1990).

Lewis, A.

Luecke, H.

H. Luecke, “Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump,” Biochim. Biophys. Acta 1460, 133-156 (2000).
[CrossRef]

Lukács, A.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
[CrossRef]

Magyari, K.

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

Maksymova, O.

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Masumura, A.

Meinke, M.

Menke, N.

Michalak, R.

Mitchell, P.

P. Mitchell, “Vectorial chemistry and molecular mechanics of chemiosmotic coupling: power transmission by proticity,” Biochem. Soc. Trans. 4, 399-430 (1976).

Nakashima, M.

Nebenzahl, I.

Nielsen, L. E.

L. E. Nielsen, Predicting the Properties of Mixture (Dekker, 1978).

Ormos, P.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Oroszi, L.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Osvay, K.

Papp, E.

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
[CrossRef]

Persoons, A.

Prasad, B. R.

Ramsden, J. J.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Rao, D. G. L. N.

Ren, L.

Riedle, E.

Saltiel, J.

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

Sifuentes, C.

C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).

Simon, J.

A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
[CrossRef]

Simon, V.

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

Son, Q. W.

Song, Q. W.

Starodumov, A. N.

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Stepanchikov, D.

E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).

Tentori, D.

D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160-168(1990).

Tian, J. G.

Van Elshocht, S.

Vanhanen, J.

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Váró, G.

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
[CrossRef]

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983).
[CrossRef]

Wang, Y.

Werner, O.

Wolff, E. K.

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Wu, S.-T.

Xu, T.

Yang, G.

Yao, B.

Yuan, Y.

Zeisel, D.

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992).
[CrossRef]

Zhang, C.

Zhang, C. P.

Zhao, Y.

Zimanyi, L.

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

Zimányi, L.

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060-4062 (2002).
[CrossRef]

Biochem. Soc. Trans. (1)

P. Mitchell, “Vectorial chemistry and molecular mechanics of chemiosmotic coupling: power transmission by proticity,” Biochem. Soc. Trans. 4, 399-430 (1976).

Biochim. Biophys. Acta (1)

H. Luecke, “Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump,” Biochim. Biophys. Acta 1460, 133-156 (2000).
[CrossRef]

Biophys. J. (1)

G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J. 43, 47-51 (1983).
[CrossRef]

Biosens. Bioelectron. (1)

A. Lukács, G. Garab, and E. Papp, “Measurement of the optical parameters of purple membrane and plant light-harvesting complex films with optical waveguide light mode spectroscopy,” Biosens. Bioelectron. 21, 1606-1612 (2006).
[CrossRef]

J. Biochem. Biophys. Methods (1)

A. Dér, P. Hargittai, and J. Simon, “Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel,” J. Biochem. Biophys. Methods 10, 295-300 (1985).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Photochem. Photobiol. B (1)

K. Magyari, Z. Bálint, V. Simon, and G. Váró, “The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin,” J. Photochem. Photobiol. B 85, 140-144 (2006).

J. Phys. Chem. (1)

D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype bRWT and the variant BRD96N,” J. Phys. Chem. 96, 7788-7792 (1992).
[CrossRef]

J. Phys. Chem. A (1)

L. Zimanyi, J. Saltiel, L. S. Brown, and J. K. Lanyi, “A priori resolution of the intermediate spectra in the bacteriorhodopsin photocycle: the time evolution of the L spectrum revealed,” J. Phys. Chem. A 110, 2318-2321 (2006).
[CrossRef]

J. Phys. Chem. B (1)

C. Gergely, L. Zimányi, and G. Váró, “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem. B 101, 9390-9395 (1997).
[CrossRef]

Opt. Commun. (1)

A. V. Kiryanov, Y. O. Barmenkov, A. N. Starodumov, V.-P. Leppanen, J. Vanhanen, and T. Jaaskelainen, “Application of the Z-scan technique to a saturable photorefractive medium with the overlapped ground and excited state absorption,” Opt. Commun. 177, 417-423 (2000).
[CrossRef]

Opt. Eng. (1)

D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29, 160-168(1990).

Opt. Express (1)

Opt. Lett. (6)

Opt. Mater. (2)

C. Sifuentes, Y. O. Barmenkov, and A. V. Kiryanov, “The intensity dependent refractive index change of bacteriorhodopsin measured by the Z-scan and phase-modulated beams techniques,” Opt. Mater. 19, 433-442 (2002).

E. Korchemskaya, D. Stepanchikov, and T. Dyukova, “Photoinduced anisotropy in chemically-modified films of bacteriorhodopsin and its genetic mutants,” Opt. Mater. 14, 185-191 (2000).

Photochem. Photobiol. (1)

E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity,” Photochem. Photobiol. 83, 403-408 (2007).

Other (1)

L. E. Nielsen, Predicting the Properties of Mixture (Dekker, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Complete experimental setup.

Fig. 2
Fig. 2

Measured refractive index of TRIS with (solid) and without (dashed line) correction for air.

Fig. 3
Fig. 3

Difference between the measured and fitted refractive index values of TRIS.

Fig. 4
Fig. 4

Measured refractive indices of bR suspension at concentrations of 20, 39, 58, and 76 μm . The wavelength range has been split into three parts so that the values due to the different concentrations can be distinguished more easily.

Fig. 5
Fig. 5

Measured refractive indices of bR as a function of concentration at two different wavelengths: 562 nm , around the main absorption line of dark bR; 800 nm , with no apparent absorption.

Fig. 6
Fig. 6

Refractive index of pure bR obtained from the Schwers form (symbols) and the corresponding semi-empirical Sellmeier fit (solid line).

Fig. 7
Fig. 7

Refractive index of pure bR obtained with the use of linear approximation (symbols) and the corresponding semi-empirical Sellmeier fit (solid line). The values and the fit are exaggerated in the inset.

Fig. 8
Fig. 8

Difference between the fitted Sellmeier and the measured values for both approximations.

Tables (2)

Tables Icon

Table 1 Coefficients of Sellmeier Equations of TRIS at the Ambient Pressure and T = 22 ° C for Two and Four Parameter Fitting

Tables Icon

Table 2 Coefficients of the Semiempirical Sellmeier Equation of Pure bR Suspension at Ambient Pressure and T = 22 ° C for Two- and Four-Parameter Fitting

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n Mix ( λ , V bR ) = V Mix V bR n bR ( λ ) + V TRIS n TRIS ( λ ) ,
n Mix ( λ , C bR ) = α ( λ ) · C bR + n TRIS ( λ ) ,
n liq = n air · sin ( δ + φ 2 ) sin ( φ 2 ) ,
d n = | n ( δ , ϕ ) δ | d δ + | n ( δ , ϕ ) ϕ | d ϕ .
n 2 1 = i = 1 k A i λ 2 λ i 2 ,
n ( λ ) 2 1 = A 0 1 + ( λ 2 λ 0 2 ) + i = 1 2 A i λ 2 λ i 2 ,

Metrics