Abstract

We propose a core-offset small core diameter dispersion compensation fiber (DCF) interferometer and investigate its applications in fiber sensors. If the transverse force is applied to a short section of the DCF, there is almost no crosstalk on the transmission spectrum between the extinction ratio variation induced by the transverse force and the wavelength shift caused by the longitudinal strain or ambient temperature, which can be applied to measure both transverse and longitudinal strain, or both transverse strain and temperature, simultaneously. The proposed sensors have the advantages of low cost, simple and compact structure, and good reproducibility.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78-80(1993).
    [CrossRef] [PubMed]
  2. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516-2519 (2007).
    [CrossRef] [PubMed]
  3. E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Tech. Lett. 19, 1266-1268 (2007).
    [CrossRef]
  4. D.-P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668-1672 (2008).
    [CrossRef] [PubMed]
  5. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291-19296 (2008).
    [CrossRef]
  6. B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array for multi-dimensional strain measurement,” Smart Mater. Struct. 7, 159-165 (1998).
    [CrossRef]
  7. L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
    [CrossRef]
  8. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
    [CrossRef]

2008

2007

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516-2519 (2007).
[CrossRef] [PubMed]

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Tech. Lett. 19, 1266-1268 (2007).
[CrossRef]

2001

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

1998

B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array for multi-dimensional strain measurement,” Smart Mater. Struct. 7, 159-165 (1998).
[CrossRef]

1996

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

1993

Atia, W. A.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

Belleville, C.

Dong, B.

Duplain, G.

Grossmann, B. G.

B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array for multi-dimensional strain measurement,” Smart Mater. Struct. 7, 159-165 (1998).
[CrossRef]

Huang, L.-T.

B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array for multi-dimensional strain measurement,” Smart Mater. Struct. 7, 159-165 (1998).
[CrossRef]

Li, E.

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Tech. Lett. 19, 1266-1268 (2007).
[CrossRef]

Li, Q.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Liang, Y.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Lit, J. W. Y.

Liu, W. K.

Liu, W.-K.

Liu, Y.

Liu, Z.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Singh, H.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

Sirkis, J. S.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

Wagreich, R. B.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

Wei, L.

Yang, J.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Yuan, L.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Zhou, D.-P.

Appl. Opt.

Electron. Lett.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223-1224(1996).
[CrossRef]

IEEE Photon. Tech. Lett.

E. Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Tech. Lett. 19, 1266-1268 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators A, Phys.

L. Yuan, Q. Li, Y. Liang, J. Yang, and Z. Liu, “Fiber optic 2-D sensor for measuring the strain inside the concrete specimen,” Sens. Actuators A, Phys. 94, 25-31 (2001).
[CrossRef]

Smart Mater. Struct.

B. G. Grossmann and L.-T. Huang, “Fiber optic sensor array for multi-dimensional strain measurement,” Smart Mater. Struct. 7, 159-165 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup and transmission spectrum of the interferometer (the inset shows the transverse sensing structure).

Fig. 2
Fig. 2

Transmission spectral response to different longitudinal strains at a fixed transverse force of (a)  0 N and (b)  2.94 N .

Fig. 3
Fig. 3

Relationship between the wavelength and the longitudinal strain under fixed transverse force of (a)  0 N and (b)  2.94 N .

Fig. 4
Fig. 4

Transmission spectral response to different transverse forces at a fixed longitudinal strain of (a)  0 μ ε and (b)  432 μ ε .

Fig. 5
Fig. 5

Relationship between the extinction ratio and the transverse strain at a fixed longitudinal strain of (a)  0 μ ε and (b)  432 μ ε .

Fig. 6
Fig. 6

Transmission spectral response to temperature under transverse force of 2.94 N .

Fig. 7
Fig. 7

Relationship between the wavelength and temperature under transverse force of 2.94 N .

Fig. 8
Fig. 8

Measured extinction ratio response to temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ ε x , ε y } = { ( 1 + 3 γ + 2 γ 2 ) π E b l F , ( 2 γ 2 γ 3 ) π E b l F } ,

Metrics