Abstract

A novel biochemical sensor based on a submicrometer size, high core–cladding index difference, silica core Si–SiO2 waveguide with a Bragg grating written in its cladding region is proposed and analyzed. Waveguide parameters are optimized to obtain maximum sensitivity, and for lower refractive index samples, an optimum core width is found to exist for both the TE and the TM mode configurations. Owing to the high index contrast at the Si–SiO2 interface, the structure is much more sensitive while operating in the TM mode configuration, showing extremely high sensitivity [200–740 nm refractive index units (RIU)] for the ambient refractive indices between 1.33 and 1.63, which is of the order of most surface plasmon polariton (SPP) based biosensors. Further, unlike SPP based sensors, the proposed structure is free from any metallic layer or bulky prism and hence easy to realize. Owing to its simple structure and small dimensions, the proposed device could be easily integrated with planar lightwave circuits and could be used for lab-on-a-chip applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
    [CrossRef]
  2. H. G. Park, S. Y. Huang, and B. Y. Kim, “All-optical intermodal switch using periodic coupling in a two mode waveguide,” Opt. Lett. 14, 877-879 (1989).
    [CrossRef] [PubMed]
  3. J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997).
    [CrossRef]
  4. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
    [CrossRef]
  5. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
    [CrossRef]
  7. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  8. J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45, 6142-6147 (2006).
    [CrossRef] [PubMed]
  9. J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
    [CrossRef]
  10. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31, 2118-2120(2006).
    [CrossRef] [PubMed]
  11. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26, 1980-1985 (2008).
    [CrossRef]
  12. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32, 211-213(2007).
    [CrossRef] [PubMed]
  13. G.D. Emmerson, C. B. E. Gawith, I. J. G. Sparrow, R. B. Williams, and P. G. R. Smith, “Physical observation of single step UV-written integrated planar Bragg structures and their application as a refractive-index sensor,” Appl. Opt. 44, 5042-5045 (2005).
    [CrossRef] [PubMed]
  14. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  15. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), Chap. 2.
  16. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981), Chaps. 2 and 7.
  17. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27, 809-811 (2002).
    [CrossRef]
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  19. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  20. K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  21. “Lab on a Chip,” Nature (Insight supplement) 442, 367-418(2006).
  22. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
    [CrossRef]
  23. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  24. A. Kumar, K. Thyagarajan, and A. Ghatak, “Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach,” Opt. Lett. 8, 63-65 (1983).
    [CrossRef] [PubMed]
  25. A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
    [CrossRef]
  26. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209-220 (1989).
    [CrossRef]

2008 (1)

2007 (1)

2006 (4)

G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31, 2118-2120(2006).
[CrossRef] [PubMed]

J. Yang, L. Yang, C. Q. Xu, C. Xu, W. Huang, and Y. Li, “Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity,” Appl. Opt. 45, 6142-6147 (2006).
[CrossRef] [PubMed]

“Lab on a Chip,” Nature (Insight supplement) 442, 367-418(2006).

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

2005 (2)

2004 (2)

2002 (1)

2001 (1)

1997 (3)

J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997).
[CrossRef]

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

1996 (1)

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

1989 (3)

1987 (1)

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

1983 (1)

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981), Chaps. 2 and 7.

Albert, J.

Almeida, V. R.

Archambault, J. L.

J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Barrios, C. A.

Baumann, I.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

Bhatia, V.

Bilodeau, F.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

Cheben, P.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Densmore, A.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Emmerson, D.

Faucher, S.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

Fokine, M.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Gawith, C. B. E.

Ghatak, A.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).

Grubb, S. G.

J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

Huang, S. Y.

Huang, W.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Janz, S.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

Kashyap, R.

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Kim, B. Y.

Kimerling, L. C.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Kumar, A.

Lamontagne, B.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Lapointe, J.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Lee, K. K.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lim, D. R.

Lipson, M.

Lukosz, W.

Margulis, W.

Marin, E.

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).

Meunier, J.-P.

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).

Nemova, G.

Nowak, W.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), Chap. 2.

Panepucci, R. R.

Park, H. G.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Post, E.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

Sauer, M.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

Schmid, J. H.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Seifert, J.

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

Shevchenko, Y. Y.

Smith, P. G. R.

Sparrow, I. J. G.

Thyagarajan, K.

Tiefenthaler, K.

Tripathi, S. M.

Vengsarkar, A. M.

Waldron, P.

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Williams, R. B.

Xu, C.

Xu, C. Q.

Xu, D.-X

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

Xu, Q.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yang, J.

Yang, L.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Electron. Lett. (1)

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465-466 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331-1333 (1997).
[CrossRef]

A. Densmore, D.-X Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522(2006).
[CrossRef]

J. Lightwave Technol. (3)

J. L. Archambault and S. G. Grubb, “Fiber gratings in lasers and amplifiers,” J. Lightwave Technol. 15, 1378-1390 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442(1997).
[CrossRef]

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26, 1980-1985 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

“Lab on a Chip,” Nature (Insight supplement) 442, 367-418(2006).

Opt. Lett. (9)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990).
[CrossRef]

Proc. SPIE (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” Proc. SPIE 1169, 98-107 (1989).

Other (4)

J. Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000), Chap. 2.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981), Chaps. 2 and 7.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Transverse section and (b) refractive index profile of the proposed planar structure.

Fig. 2
Fig. 2

Effective index variation with ARI for the (a)  TE 0 mode and (b)  TM 0 mode with a = 0.17 μm and b = 0.1 μm at λ = 1.55 μm .

Fig. 3
Fig. 3

Normalized transverse field distribution of E x ( TM 0 mode) and E y ( TE 0 mode) for a = 0.17 μm and b = 0.1 μm at λ = 1.55 μm .

Fig. 4
Fig. 4

Variation of ARI sensitivity ( = Δ λ R / Δ n se ) for TM 0 and TE 0 modes with core widths at λ R = 1.55 μm and n se = 1.33 .

Fig. 5
Fig. 5

TM 0 mode fractional power in different regions as a function of core width at λ R = 1.55 μm and n se = 1.33 .

Fig. 6
Fig. 6

TM 0 mode fractional power in the sensing region (solid curve) and lower cladding region (dashed curve) as a function of core width for different overlay refractive indices.

Fig. 7
Fig. 7

E 11 x mode fractional power in the sensing region as a function of core widths a x and a y at λ R = 1.55 μm and n se = 1.33 . Inset: the studied rib waveguide.

Fig. 8
Fig. 8

TM 0 mode fractional power in sensing region as a function of core width and upper cladding width at a λ R = 1.55 μm and n se = 1.33 .

Fig. 9
Fig. 9

Variation of λ R and ARI sensitivity with ARI for a = 0.13 μm and b = 0.1 μm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ n ucl = n ucl σ [ 1 + υ cos ( 2 π Λ z ) ] ,
κ co co + β π Λ = 0 λ R = 2 Λ ( n eff + κ co co k 0 ) ,
κ co co = k 0 n ucl 2 × σ 2 Z 0 a a + b | E i | 2 d x ,
R ( λ ) = [ | κ co co | × sinh ( α × L ) ] 2 [ | κ co co | × cosh ( α × L ) ] 2 δ 2 ,

Metrics