Abstract

Coupling of two identical channel waveguides separated by an air gap is analyzed. The coupled structure exhibits a strong refractive index contrast in both the transverse and longitudinal dimensions, which necessitates the use of a full-vectorial model. The 3D full-vectorial bidirectional method-of-lines beam propagation is utilized for this purpose. The effect of the transverse and longitudinal displacements on the modal reflectivity and modal transmissivity of the fundamental TE-like and TM-like modes is reported. Numerical results are presented for both the full-vectorial model and the approximate semivectorial model. A significant difference between the predictions of these two models is seen.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
    [CrossRef]
  2. W. C. Chang and H. B. Lin, “A novel low-loss wide-angle Y-branch with a diamond-like micro prism,” IEEE Photon. Technol. Lett. 11, 683-685 (1999).
    [CrossRef]
  3. H. A. Jamid, Md. Zahed. M. Khan, and Md. Ameeruddin, “A compact 90° three branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900-3906 (2005).
    [CrossRef]
  4. I. D. Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic multiple-wavelength filter based on one dimensional photonic bandgap structures with defects,” J. Lightwave Technol. 22, 1615-1621 (2004).
    [CrossRef]
  5. A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
    [CrossRef]
  6. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  7. Y. Chiou and H. Chang, “Analysis of optical waveguide discontinuities using the Padé approximants,” IEEE Photon. Technol. Lett. 9, 964-966 (1997).
    [CrossRef]
  8. L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
    [CrossRef]
  9. T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
    [CrossRef]
  10. G. Kweon, I. Park, and J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436-2443 (1996).
    [CrossRef]
  11. N. N. Feng and W. P. Huang, “A Field-based numerical method for three-dimensional analysis of optical waveguide discontinuities,” IEEE J. Quantum Electron. 39, 1661-1665 (2003).
    [CrossRef]
  12. B. N. A. Rahman, J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. 6, 52-57 (1988).
    [CrossRef]
  13. K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
    [CrossRef]
  14. M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
    [CrossRef]
  15. K. Jiang and W. P. Huang, “A finite-difference-based mode matching method for 3-D waveguide structures under semivectorial approximation,” J. Lightwave Technol. 23, 4239-4248 (2005).
    [CrossRef]
  16. S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
    [CrossRef]
  17. H. A. Jamid and Md. Zahed. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Padé approximants,” IEEE J. Quantum Electron. 43, 343-349(2007).
    [CrossRef]
  18. H. A. Jamid and Md. Zahed M. Khan, “A numerical approach for full-vectorial analysis of 3-D guided wave structures with multiple and strong longitudinal discontinuities,” IEEE J. Quantum Electron. 45, 117-124 (2009).
    [CrossRef]
  19. S. H. Wei and Y. Y. Lu, “Application of bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon.Technol. Lett. 14, 645-647 (2002).
    [CrossRef]
  20. H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE J. Microwave Theory Tech. 52, 1166-1174 (2004).
    [CrossRef]

2009 (1)

H. A. Jamid and Md. Zahed M. Khan, “A numerical approach for full-vectorial analysis of 3-D guided wave structures with multiple and strong longitudinal discontinuities,” IEEE J. Quantum Electron. 45, 117-124 (2009).
[CrossRef]

2007 (1)

H. A. Jamid and Md. Zahed. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Padé approximants,” IEEE J. Quantum Electron. 43, 343-349(2007).
[CrossRef]

2005 (2)

2004 (2)

2003 (2)

S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
[CrossRef]

N. N. Feng and W. P. Huang, “A Field-based numerical method for three-dimensional analysis of optical waveguide discontinuities,” IEEE J. Quantum Electron. 39, 1661-1665 (2003).
[CrossRef]

2002 (1)

S. H. Wei and Y. Y. Lu, “Application of bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon.Technol. Lett. 14, 645-647 (2002).
[CrossRef]

2001 (1)

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

1999 (2)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

W. C. Chang and H. B. Lin, “A novel low-loss wide-angle Y-branch with a diamond-like micro prism,” IEEE Photon. Technol. Lett. 11, 683-685 (1999).
[CrossRef]

1998 (2)

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

1997 (1)

Y. Chiou and H. Chang, “Analysis of optical waveguide discontinuities using the Padé approximants,” IEEE Photon. Technol. Lett. 9, 964-966 (1997).
[CrossRef]

1996 (1)

G. Kweon, I. Park, and J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436-2443 (1996).
[CrossRef]

1994 (2)

H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
[CrossRef]

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

1992 (1)

T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
[CrossRef]

1988 (1)

B. N. A. Rahman, J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. 6, 52-57 (1988).
[CrossRef]

Ameeruddin, Md.

Arregui, F. J.

Barcz, A.

S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
[CrossRef]

Benson, T. M.

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

Chang, H.

Y. Chiou and H. Chang, “Analysis of optical waveguide discontinuities using the Padé approximants,” IEEE Photon. Technol. Lett. 9, 964-966 (1997).
[CrossRef]

Chang, W. C.

W. C. Chang and H. B. Lin, “A novel low-loss wide-angle Y-branch with a diamond-like micro prism,” IEEE Photon. Technol. Lett. 11, 683-685 (1999).
[CrossRef]

Chiou, Y.

Y. Chiou and H. Chang, “Analysis of optical waveguide discontinuities using the Padé approximants,” IEEE Photon. Technol. Lett. 9, 964-966 (1997).
[CrossRef]

Davies, J. B.

B. N. A. Rahman, J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. 6, 52-57 (1988).
[CrossRef]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Feng, N. N.

N. N. Feng and W. P. Huang, “A Field-based numerical method for three-dimensional analysis of optical waveguide discontinuities,” IEEE J. Quantum Electron. 39, 1661-1665 (2003).
[CrossRef]

Hasumi, Y.

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Helfert, S. F.

S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
[CrossRef]

Huang, W. P.

K. Jiang and W. P. Huang, “A finite-difference-based mode matching method for 3-D waveguide structures under semivectorial approximation,” J. Lightwave Technol. 23, 4239-4248 (2005).
[CrossRef]

N. N. Feng and W. P. Huang, “A Field-based numerical method for three-dimensional analysis of optical waveguide discontinuities,” IEEE J. Quantum Electron. 39, 1661-1665 (2003).
[CrossRef]

Husain, M. N.

T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
[CrossRef]

Jamid, H. A.

H. A. Jamid and Md. Zahed M. Khan, “A numerical approach for full-vectorial analysis of 3-D guided wave structures with multiple and strong longitudinal discontinuities,” IEEE J. Quantum Electron. 45, 117-124 (2009).
[CrossRef]

H. A. Jamid and Md. Zahed. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Padé approximants,” IEEE J. Quantum Electron. 43, 343-349(2007).
[CrossRef]

H. A. Jamid, Md. Zahed. M. Khan, and Md. Ameeruddin, “A compact 90° three branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900-3906 (2005).
[CrossRef]

H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE J. Microwave Theory Tech. 52, 1166-1174 (2004).
[CrossRef]

Jiang, K.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kawano, K.

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

Kendall, P. C.

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

Kenis, A. M.

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Khan, Md. Zahed M.

H. A. Jamid and Md. Zahed M. Khan, “A numerical approach for full-vectorial analysis of 3-D guided wave structures with multiple and strong longitudinal discontinuities,” IEEE J. Quantum Electron. 45, 117-124 (2009).
[CrossRef]

Khan, Md. Zahed. M.

H. A. Jamid and Md. Zahed. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Padé approximants,” IEEE J. Quantum Electron. 43, 343-349(2007).
[CrossRef]

H. A. Jamid, Md. Zahed. M. Khan, and Md. Ameeruddin, “A compact 90° three branch beam splitter based on resonant coupling,” J. Lightwave Technol. 23, 3900-3906 (2005).
[CrossRef]

Kitoh, T.

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

Kohtoku, M.

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

Kweon, G.

G. Kweon, I. Park, and J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436-2443 (1996).
[CrossRef]

Lin, H. B.

W. C. Chang and H. B. Lin, “A novel low-loss wide-angle Y-branch with a diamond-like micro prism,” IEEE Photon. Technol. Lett. 11, 683-685 (1999).
[CrossRef]

H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
[CrossRef]

Lu, Y. Y.

S. H. Wei and Y. Y. Lu, “Application of bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon.Technol. Lett. 14, 645-647 (2002).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Matias, I. R.

Moiseyev, N.

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Orenstein, M.

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Park, I.

G. Kweon, I. Park, and J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436-2443 (1996).
[CrossRef]

Pereda, J. A.

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

Pregla, R.

S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
[CrossRef]

Prieto, A.

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

Rahman, B. N. A.

B. N. A. Rahman, J. B. Davies, “Analysis of optical waveguide discontinuities,” J. Lightwave Technol. 6, 52-57 (1988).
[CrossRef]

Reed, M.

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

Rozzi, T.

T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
[CrossRef]

Sewell, P.

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

Shim, J.

G. Kweon, I. Park, and J. Shim, “A computational method of determining reflectance at abrupt waveguide interfaces,” J. Lightwave Technol. 14, 2436-2443 (1996).
[CrossRef]

Takeshita, T.

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

Vegas, A.

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

Vielva, L. A.

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

Villar, I. D.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Vorobeichik, I.

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

Wang, W. S.

H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
[CrossRef]

Wang, Y. H.

H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
[CrossRef]

Wei, S. H.

S. H. Wei and Y. Y. Lu, “Application of bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon.Technol. Lett. 14, 645-647 (2002).
[CrossRef]

Zappelli, L.

T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
[CrossRef]

Electron. Lett. (1)

H. B. Lin, Y. H. Wang, and W. S. Wang, “Single mode 1×3 integrated optical branching circuit design using micro prism,” Electron. Lett. 30, 408-409 (1994).
[CrossRef]

IEE Proc. Microwaves Antennas and Propag. (1)

L. A. Vielva, J. A. Pereda, A. Vegas, and A. Prieto, “Simulating 3D waveguide discontinuities using a combination of Prony's method and FDTD with improved absorbing boundary conditions,” IEE Proc. Microwaves Antennas and Propag. 141, 127-132 (1994).
[CrossRef]

IEE Proc. Optoelectron. (1)

M. Reed, P. Sewell, T. M. Benson, and P. C. Kendall, “Efficient propagation algorithm for 3D optical waveguides,” IEE Proc. Optoelectron. 145, 53-58 (1998).
[CrossRef]

IEEE J. Microwave Theory Tech. (1)

H. A. Jamid, “Enhanced PML performance using higher order approximation,” IEEE J. Microwave Theory Tech. 52, 1166-1174 (2004).
[CrossRef]

IEEE J. Quantum Electron. (5)

H. A. Jamid and Md. Zahed. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Padé approximants,” IEEE J. Quantum Electron. 43, 343-349(2007).
[CrossRef]

H. A. Jamid and Md. Zahed M. Khan, “A numerical approach for full-vectorial analysis of 3-D guided wave structures with multiple and strong longitudinal discontinuities,” IEEE J. Quantum Electron. 45, 117-124 (2009).
[CrossRef]

N. N. Feng and W. P. Huang, “A Field-based numerical method for three-dimensional analysis of optical waveguide discontinuities,” IEEE J. Quantum Electron. 39, 1661-1665 (2003).
[CrossRef]

A. M. Kenis, I. Vorobeichik, M. Orenstein, and N. Moiseyev, “Non-evanescent adiabatic directional coupler,” IEEE J. Quantum Electron. 37, 1321-1328 (2001).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Chiou and H. Chang, “Analysis of optical waveguide discontinuities using the Padé approximants,” IEEE Photon. Technol. Lett. 9, 964-966 (1997).
[CrossRef]

K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photon. Technol. Lett. 10, 108-110 (1998).
[CrossRef]

W. C. Chang and H. B. Lin, “A novel low-loss wide-angle Y-branch with a diamond-like micro prism,” IEEE Photon. Technol. Lett. 11, 683-685 (1999).
[CrossRef]

IEEE Photon.Technol. Lett. (1)

S. H. Wei and Y. Y. Lu, “Application of bi-CGSTAB to waveguide discontinuity problems,” IEEE Photon.Technol. Lett. 14, 645-647 (2002).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

T. Rozzi, L. Zappelli, and M. N. Husain, “Radiation modes and step discontinuities in dielectric rib waveguide,” IEEE Trans. Microwave Theory Tech. 40, 1879-1888 (1992).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Quantum Electron. (1)

S. F. Helfert, A. Barcz, and R. Pregla, “Three-dimensional vectorial analysis of waveguide structures with the method-of-lines,” Opt. Quantum Electron. 35, 381-394 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Two abrupt longitudinal discontinuities placed at z = 0 and z = d .

Fig. 2
Fig. 2

(a) Two identical coupled buried waveguides and (b) two identical coupled raised channel waveguides.

Fig. 3
Fig. 3

Calculated semivectorial results of the fundamental TE-like and TM-like mode transmissivity corresponding to the coupled waveguides shown in Fig. 2a at the operating wavelength λ = 0.86 μm .

Fig. 4
Fig. 4

Fundamental TE-like and TM-like (a) mode reflectivity and (b) mode transmissivity, corresponding to the coupled channel waveguides shown in Fig. 2b at the operating wavelength λ = 1.55 μm and a fixed air gap width L = 0.1 μm .

Fig. 5
Fig. 5

Magnitude of the incident fundamental TE-like and TM-like modes corresponding to the coupled channel waveguides shown in Fig. 2b at the operating wavelength λ = 1.55 μm and core width w x = 1 μm .

Fig. 6
Fig. 6

Fundamental TE-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b.

Fig. 7
Fig. 7

Fundamental TM-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b.

Fig. 8
Fig. 8

Fundamental TE-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b when the output (right) waveguide is displaced in the horizontal direction.

Fig. 9
Fig. 9

Fundamental TM-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b when the output (right) waveguide is displaced in the horizontal direction.

Fig. 10
Fig. 10

Fundamental TE-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b when the output (right) waveguide is displaced in the vertical direction.

Fig. 11
Fig. 11

Fundamental TM-like mode response corresponding to the coupled channel waveguides shown in Fig. 2b when the output (right) waveguide is displaced in the vertical direction.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d 2 d z 2 H ¯ + C ^ 2 H ¯ = 0 ¯ .
E ¯ = S ^ H ¯ ,
Γ ^ X ¯ = Λ ¯ ,
Γ ^ = [ ( S ^ 1 + S ^ 2 ) 2 S ^ 2 P ^ 2 0 ^ 0 ^ 0 ^ ( S ^ 2 + S ^ 3 ) ( S ^ 3 S ^ 2 ) P ^ 2 0 ^ 0 ^ ( S ^ 1 S ^ 2 ) P ^ 2 ( S ^ 1 + S ^ 2 ) 0 ^ 0 ^ 0 ^ 2 S ^ 2 P ^ 2 ( S ^ 2 + S ^ 3 ) ] Λ ¯ = [ ( S ^ 1 S ^ 2 ) A ¯ 1 0 ¯ 2 S ^ 1 A ¯ 1 0 ¯ ] .
T m m = P m t / P m i ,
P m i = 0.5 Re ( E x , m i H y , m i * E y , m i H x , m i * ) d x d y ,
P m t = 0.5 Re ( E x , m t H y , m t * E y , m t H x , m t * ) d x d y .

Metrics