Abstract

A novel approach to perform photonic analog-to-digital conversion with improved bit resolution is proposed and investigated. Instead of using Mach–Zehnder modulators (MZMs) with geometrically-scaled half-wave voltages, the MZMs in the approach have identical half-wave voltages, which greatly simplifies the implementation. To improve the bit resolution without increasing the number of MZMs, each MZM is connected with multiple comparators having multiple thresholds. The quantization and encoding are performed based on the symmetrical number system (SNS) technique. Three new quantization and encoding schemes based on the SNS are proposed and demonstrated. A 4bit photonic analog-to-digital conversion based on the given schemes is investigated. For the given schemes, two MZMs are needed with the numbers of comparators being 14, 16, and 9, respectively. Numerical simulations and experiments are performed. The effectiveness of the proposed schemes is verified.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Ho, Q. Z. Wang, J. Chen, Q. D. Liu, and R. R. Alfano, “Ultrafast optical pulse digitization with unary spectrally encoded cross-phase modulation,” Appl. Opt. 36, 3425-3429(1997).
    [CrossRef] [PubMed]
  2. T. Konishi, K. Tanimura, K. Asano, Y. Oshita, and Y. Ichioka, “All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique,” J. Opt. Soc. Am. B 19, 2817-2823 (2002).
    [CrossRef]
  3. S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
    [CrossRef]
  4. T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion, ” Opt. Express 15, 15812-15817 (2007).
    [CrossRef] [PubMed]
  5. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
    [CrossRef]
  6. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955-1982 (2007).
    [CrossRef] [PubMed]
  7. H. F. Taylor, “An optical analog-to-digital converter design and analysis,” IEEE J. Quantum Electron. 15, 210-216 (1979).
    [CrossRef]
  8. H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524-1525 (1975).
    [CrossRef]
  9. B. Jalali and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett. 20, 1901-1903(1995).
    [CrossRef] [PubMed]
  10. M. Currie, “Optical quantization of microwave signals via distributed phase modulation,” J. Lightwave Technol. 23, 827-833 (2005).
    [CrossRef]
  11. J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17, 468-470(2005).
    [CrossRef]
  12. W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
    [CrossRef]
  13. H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16, 567-572 (2008).
    [CrossRef] [PubMed]
  14. P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638-2645 (1994).
    [CrossRef]
  15. S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
    [CrossRef]
  16. J. Stigwall and S. Galt, “Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24, 1247-1256 (2006).
    [CrossRef]
  17. M. E. Holder, “A modified Karnaugh map technique,” IEEE Trans. Ed. 48, 206-207 (2005).
    [CrossRef]

2009 (1)

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

2005 (3)

M. Currie, “Optical quantization of microwave signals via distributed phase modulation,” J. Lightwave Technol. 23, 827-833 (2005).
[CrossRef]

M. E. Holder, “A modified Karnaugh map technique,” IEEE Trans. Ed. 48, 206-207 (2005).
[CrossRef]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17, 468-470(2005).
[CrossRef]

2004 (1)

S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
[CrossRef]

2002 (1)

1999 (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
[CrossRef]

1997 (1)

1995 (1)

1994 (1)

P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638-2645 (1994).
[CrossRef]

1979 (1)

H. F. Taylor, “An optical analog-to-digital converter design and analysis,” IEEE J. Quantum Electron. 15, 210-216 (1979).
[CrossRef]

1975 (1)

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524-1525 (1975).
[CrossRef]

Alfano, R. R.

Asano, K.

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
[CrossRef]

Chen, J.

Chi, H.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16, 567-572 (2008).
[CrossRef] [PubMed]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
[CrossRef]

Currie, M.

Galt, S.

J. Stigwall and S. Galt, “Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24, 1247-1256 (2006).
[CrossRef]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17, 468-470(2005).
[CrossRef]

Ho, P. P.

Holder, M. E.

M. E. Holder, “A modified Karnaugh map technique,” IEEE Trans. Ed. 48, 206-207 (2005).
[CrossRef]

Ichioka, Y.

Itoh, K.

Jalali, B.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
[CrossRef]

B. Jalali and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett. 20, 1901-1903(1995).
[CrossRef] [PubMed]

Jin, X.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Kitayama, K.

S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
[CrossRef]

Konishi, T.

Li, W.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

Liu, Q. D.

Maruta, A.

S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
[CrossRef]

Nishitani, T.

Osa, S.

S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
[CrossRef]

Oshita, Y.

Pace, P. E.

P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638-2645 (1994).
[CrossRef]

Shi, Z.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Stigwall, J.

J. Stigwall and S. Galt, “Demonstration and analysis of a 40-Gigasample/s interferometric analog-to-digital converter,” J. Lightwave Technol. 24, 1247-1256 (2006).
[CrossRef]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17, 468-470(2005).
[CrossRef]

Styer, D.

P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638-2645 (1994).
[CrossRef]

Tanimura, K.

Taylor, H. F.

H. F. Taylor, “An optical analog-to-digital converter design and analysis,” IEEE J. Quantum Electron. 15, 210-216 (1979).
[CrossRef]

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524-1525 (1975).
[CrossRef]

Valley, G. C.

Wang, Q. Z.

Wu, Q.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

Xie, Y. M.

Yang, S.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Yao, J.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach-Zehnder modulators with identical half-wave voltages,” Opt. Express 16, 567-572 (2008).
[CrossRef] [PubMed]

Yao, M.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

Zhang, H.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

Zhang, X.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Zhang, Z.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

Zheng, S.

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

H. F. Taylor, “An optical analog-to-digital converter design and analysis,” IEEE J. Quantum Electron. 15, 210-216 (1979).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

S. Osa, A. Maruta, and K. Kitayama, “All-optical quantization scheme based on fiber nonlinearity,” IEEE Photonics Technol. Lett. 16, 587-589 (2004).
[CrossRef]

J. Stigwall and S. Galt, “Interferometric analog-to-digital conversion scheme,” IEEE Photonics Technol. Lett. 17, 468-470(2005).
[CrossRef]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, “All-optical analog-to-digital conversion based on polarization-differential interference and phase modulation,” IEEE Photonics Technol. Lett. 19, 625-627 (2007).
[CrossRef]

IEEE Trans. Ed. (1)

M. E. Holder, “A modified Karnaugh map technique,” IEEE Trans. Ed. 48, 206-207 (2005).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microwave Theor. Tech. 47, 1309-1314 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Yang, Z. Shi, H. Chi, X. Zhang, S. Zheng, X. Jin, and J. Yao, “Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltage,” Opt. Commun. 282, 504-507 (2009).
[CrossRef]

Opt. Eng. (1)

P. E. Pace and D. Styer, “High-resolution encoding process for an integrated optical analog-to-digital converter,” Opt. Eng. 33, 2638-2645 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

H. F. Taylor, “An electrooptic analog-to-digital converter,” Proc. IEEE 63, 1524-1525 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

3 bit ADC using four MZMs with identical half-wave voltages.

Fig. 2
Fig. 2

Operation of a 4-channel photonic ADC. (a) Transfer functions of the four MZMs: dash-dot, φ b = 0 ; dotted, φ b = π / 4 ; dash, φ b = 2 π / 4 ; solid, φ b = 3 π / 4 . (b) Quantization operation. (c) Relationship between the input phase modulation (dotted) and the quantized values (solid).

Fig. 3
Fig. 3

n-channel ADC with n MZMs having identical half-wave voltages. The resolution is improved by using multiple comparators at the output of each MZM.

Fig. 4
Fig. 4

(a) Transfer functions of the two MZMs: solid line, φ b = 0 ; dash line, φ b = π / 8 . (b) Quantization operation using the proposed Scheme.

Fig. 5
Fig. 5

(a) Transfer functions of the two MZMs: solid line, φ b = π / 16 ; dashed line, φ b = 3 π / 16 . (b) Quantization operation using Scheme II.

Fig. 6
Fig. 6

(a) Transfer functions of the two MZMs: solid line, φ b = π / 16 ; dash line, φ b = π / 2 . (b) Quantization operation using Scheme III.

Fig. 7
Fig. 7

Experimental setup: TLS, tunable laser source; PC, polarization controller; PD, photodetector.

Fig. 8
Fig. 8

Numerical result for an ADC based on Scheme I. (a) Two ideal output waveforms corresponding to two bias phase shifts: solid line, φ b = 0 ; dash line, φ b = π / 8 . (b) Quantized signal (stepped) and the fitted sinusoidal signal (smooth). (c) Errors between the quantized signal and the fitted signal.

Fig. 9
Fig. 9

Experimental results for a 4 bit ADC based on Scheme I. (a) Measured two waveforms corresponding to two bias phase shifts ( φ b = 0 and φ b = π / 8 ). (b) Quantized signal (stepped) and the fitted sinusoidal signal (smooth). (c) Errors between the quantized signal and the fitted signal.

Fig. 10
Fig. 10

Experimental results for a 4 bit ADC based on Scheme II. (a) Digital signal (stepped) and the fitted sinusoidal signal (smooth). (b) Eerrors between the quantized signal and the fitted signal.

Fig. 11
Fig. 11

Numerical results for a 4 bit ADC based on Scheme III. (a) Two ideal output waveforms corresponding to two bias phase shifts: solid, φ b = π / 16 ; dash, φ b = π / 2 . (b) Quantized signal (stepped) and the fitted sinusoidal signal (smooth). (c) Errors between the quantized signal and the fitted signal.

Fig. 12
Fig. 12

Experimental results for a 4 bit ADC based on Scheme III. (a) Measured two waveforms corresponding to two bias phase shifts of φ b = π / 16 and φ b = π / 2 . (b) Digital signal (stepped) and the fitted sinusoidal signal (smooth). (c) Errors between the quantized signal and the fitted signal.

Fig. 13
Fig. 13

SNR of the digitized signal and the ENOB versus the SNR of the PD current.

Fig. 14
Fig. 14

ENOB of the system as a function of the standard deviation of the sampling jitter.

Tables (1)

Tables Icon

Table 1 Comparison of the Required Number of MZMs and Comparators Among the Three Schemes a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 0 = I i 2 [ 1 + cos ( φ s + φ b ) ] ,
φ b j = j 2 π m n , ( j = 0 , 1 , 2 , , n 1 ) .
T j = cos 2 [ π 2 m V j + π 2 ] ,
T j = cos 2 [ π 2 m V j + π 2 π 4 m ] ,
φ b j = j π m ( n 1 ) π 16 , ( j = 0 , 1 , 2 , , n 1 ) .
T j = cos 2 [ π 2 × 8 V j + π 2 ] ,
ENOB = dSNR 1.76 6.02 .
T j = cos 2 [ π 2 × 8 V j + π 2 π 4 × 8 ] ,
φ σ ( x ) = 1 σ 2 π exp ( x 2 2 σ 2 ) ,

Metrics