Abstract

A simple and robust retroreflective shadowgraph technique is presented for the visualization of refractive phenomena across a broad range of scales in space and time. Originally developed by Edgerton, it is improved here with techniques for producing coincident shadowgram illumination. The optical components required to construct a simple system are discussed, including the retroreflective screen material. The optical sensitivity of the system is explored for visualization of shock waves and turbulent eddies. The shadowgraph system is used here to visualize experiments performed in the laboratory, on a military test range, and in an open field.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).
  2. G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .
  3. G. E. A. Meier, “Hintergrund schlierenmessverfahren,” Deutsche Patentanmeldung DE 199 42 856 A1 (1999).
  4. H. E. Edgerton, Electronic Flash, Strobe (MIT Press, 1970).
  5. H. E. Edgerton, “Shockwave photography of large subjects in daylight,” Rev. Sci. Instrum. 29, 171-172 (1958).
    [CrossRef]
  6. J. K. Biele, “Point-source spark shadowgraphy at the historic birthplace of supersonic transportation--a historical note,” Shock Waves 13, 167-177 (2003).
    [CrossRef]
  7. S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
    [CrossRef]
  8. T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987).
    [CrossRef]
  9. A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992).
    [CrossRef]
  10. G. E. A. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181-187 (2002).
  11. L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004).
    [CrossRef]
  12. H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001).
    [CrossRef]
  13. M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).
  14. 3M Industrial Adhesives and Tapes Division, 900 Bush Avenue, St. Paul, Minnesota, USA.
  15. S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
    [CrossRef]
  16. H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
    [CrossRef]
  17. M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007).
    [CrossRef]
  18. M. J. Hargather, “Scaling, characterization and application of gram-range explosive charges to blast testing of materials,” Ph.D. thesis (The Pennsylvania State University, 2008).
  19. J. M. Dewey, “Explosive flows: shock tubes and blast waves,” in Handbook of Flow Visualization, 1st ed. (Hemisphere, 1989), Chap. 29, pp. 481-497.
  20. R. Varosh, “Electric detonators: EBW and EFI,” Propellants Explosives Pyrotechnics 21, 150-154 (1996).
    [CrossRef]
  21. P. W. Cooper, Explosives Engineering (Wiley-VCH, 1996).
  22. H. Schardin, “Die schlierenverfahren und ihre anwendungen,” Ergeb. Exakten Naturwiss. 20, 303-439 (1942).
    [CrossRef]
  23. G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).
  24. G. S. Settles, “The Penn State full-scale schlieren system,” in Proceedings 11th International Symposium on Flow Visualization, T. Mueller and I. Grant, eds. (IOP2004), paper 76.

2009 (1)

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).

2007 (1)

M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007).
[CrossRef]

2005 (2)

G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

2004 (1)

L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004).
[CrossRef]

2003 (2)

J. K. Biele, “Point-source spark shadowgraphy at the historic birthplace of supersonic transportation--a historical note,” Shock Waves 13, 167-177 (2003).
[CrossRef]

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

2002 (1)

G. E. A. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181-187 (2002).

2001 (1)

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001).
[CrossRef]

1996 (2)

R. Varosh, “Electric detonators: EBW and EFI,” Propellants Explosives Pyrotechnics 21, 150-154 (1996).
[CrossRef]

S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
[CrossRef]

1992 (1)

A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992).
[CrossRef]

1987 (2)

S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
[CrossRef]

T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987).
[CrossRef]

1958 (1)

H. E. Edgerton, “Shockwave photography of large subjects in daylight,” Rev. Sci. Instrum. 29, 171-172 (1958).
[CrossRef]

1942 (1)

H. Schardin, “Die schlierenverfahren und ihre anwendungen,” Ergeb. Exakten Naturwiss. 20, 303-439 (1942).
[CrossRef]

Back, L. H.

S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
[CrossRef]

Bagai, A.

A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992).
[CrossRef]

Baker, A.

S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
[CrossRef]

Biele, J. K.

J. K. Biele, “Point-source spark shadowgraphy at the historic birthplace of supersonic transportation--a historical note,” Shock Waves 13, 167-177 (2003).
[CrossRef]

Cho, Y. I.

S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
[CrossRef]

Cooper, P. W.

P. W. Cooper, Explosives Engineering (Wiley-VCH, 1996).

Dewey, J. M.

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

J. M. Dewey, “Explosive flows: shock tubes and blast waves,” in Handbook of Flow Visualization, 1st ed. (Hemisphere, 1989), Chap. 29, pp. 481-497.

Dodson, L. J.

G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

Edgerton, H. E.

H. E. Edgerton, “Shockwave photography of large subjects in daylight,” Rev. Sci. Instrum. 29, 171-172 (1958).
[CrossRef]

H. E. Edgerton, Electronic Flash, Strobe (MIT Press, 1970).

Gatto, J. A.

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

Grumstrup, T. P.

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

Hargather, M. J.

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).

M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007).
[CrossRef]

M. J. Hargather, “Scaling, characterization and application of gram-range explosive charges to blast testing of materials,” Ph.D. thesis (The Pennsylvania State University, 2008).

Kleine, H.

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

Leishman, J. G.

S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
[CrossRef]

A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992).
[CrossRef]

Light, J. S.

T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987).
[CrossRef]

Meier, G. E. A.

L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004).
[CrossRef]

G. E. A. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181-187 (2002).

G. E. A. Meier, “Hintergrund schlierenmessverfahren,” Deutsche Patentanmeldung DE 199 42 856 A1 (1999).

Miller, J. D.

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

Mizukaki, T.

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

Norman, T. R.

T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987).
[CrossRef]

Ohashi, K.

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

Parthasarathy, S. P.

S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
[CrossRef]

Raffel, M.

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001).
[CrossRef]

Richard, H.

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001).
[CrossRef]

Schardin, H.

H. Schardin, “Die schlierenverfahren und ihre anwendungen,” Ergeb. Exakten Naturwiss. 20, 303-439 (1942).
[CrossRef]

Settles, G. S.

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).

M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007).
[CrossRef]

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).

G. S. Settles, “The Penn State full-scale schlieren system,” in Proceedings 11th International Symposium on Flow Visualization, T. Mueller and I. Grant, eds. (IOP2004), paper 76.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

Takayama, K.

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

Varosh, R.

R. Varosh, “Electric detonators: EBW and EFI,” Propellants Explosives Pyrotechnics 21, 150-154 (1996).
[CrossRef]

Venkatakrishnan, L.

L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004).
[CrossRef]

Winburn, S.

S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
[CrossRef]

AIAA J. (1)

S. P. Parthasarathy, Y. I. Cho, and L. H. Back, “Wide-field shadowgraphy of tip vortices from a helicopter rotor,” AIAA J. 25, 64-70 (1987).
[CrossRef]

Ergeb. Exakten Naturwiss. (1)

H. Schardin, “Die schlierenverfahren und ihre anwendungen,” Ergeb. Exakten Naturwiss. 20, 303-439 (1942).
[CrossRef]

Exp. Fluids (4)

G. E. A. Meier, “Computerized background-oriented schlieren,” Exp. Fluids 33, 181-187 (2002).

L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the background oriented schlieren technique,” Exp. Fluids 37, 237-247 (2004).
[CrossRef]

S. Winburn, A. Baker, and J. G. Leishman, “Angular response properties of retroreflective screen materials used in wide-field shadowgraphy,” Exp. Fluids 20, 227-229(1996).
[CrossRef]

M. J. Hargather and G. S. Settles, “Natural-background-oriented schlieren,” Exp. Fluids DOI:10.1007/s00348-009-0709-3 (2009).

J. Am. Helicopter Soc. (2)

T. R. Norman and J. S. Light, “Rotor tip vortex geometry measurements using the wide-field shadowgraph technique,” J. Am. Helicopter Soc. 32, 40-50 (1987).
[CrossRef]

A. Bagai and J. G. Leishman, “Improved wide-field shadowgraph set-up for rotor wake visualization,” J. Am. Helicopter Soc. 37, 86-92 (1992).
[CrossRef]

J. Visualiz. Comput. Animation (1)

G. S. Settles and L. J. Dodson, “Full-scale schlieren visualization of supersonic bullet and muzzle blast from firing a .30-06 rifle,” J. Visualiz. Comput. Animation 8, 6 (2005).

Meas. Sci. Technol. (1)

H. Richard and M. Raffel, “Principle and applications of the background oriented schlieren (bos) method,” Meas. Sci. Technol. 12, 1576-1585 (2001).
[CrossRef]

Proc. SPIE (1)

G. S. Settles, T. P. Grumstrup, L. J. Dodson, J. D. Miller, and J. A. Gatto, “Full-scale high-speed schlieren imaging of explosions and gunshots,” Proc. SPIE 5580, 5580-174 (2005) .

Propellants Explosives Pyrotechnics (1)

R. Varosh, “Electric detonators: EBW and EFI,” Propellants Explosives Pyrotechnics 21, 150-154 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

H. E. Edgerton, “Shockwave photography of large subjects in daylight,” Rev. Sci. Instrum. 29, 171-172 (1958).
[CrossRef]

Shock Waves (3)

J. K. Biele, “Point-source spark shadowgraphy at the historic birthplace of supersonic transportation--a historical note,” Shock Waves 13, 167-177 (2003).
[CrossRef]

H. Kleine, J. M. Dewey, K. Ohashi, T. Mizukaki, and K. Takayama, “Studies of the TNT equivalence of silver azide charges,” Shock Waves 13, 123-138 (2003).
[CrossRef]

M. J. Hargather and G. S. Settles, “Optical measurement and scaling of blasts from gram-range explosive charges,” Shock Waves 17, 215-223 (2007).
[CrossRef]

Other (8)

M. J. Hargather, “Scaling, characterization and application of gram-range explosive charges to blast testing of materials,” Ph.D. thesis (The Pennsylvania State University, 2008).

J. M. Dewey, “Explosive flows: shock tubes and blast waves,” in Handbook of Flow Visualization, 1st ed. (Hemisphere, 1989), Chap. 29, pp. 481-497.

P. W. Cooper, Explosives Engineering (Wiley-VCH, 1996).

3M Industrial Adhesives and Tapes Division, 900 Bush Avenue, St. Paul, Minnesota, USA.

G. E. A. Meier, “Hintergrund schlierenmessverfahren,” Deutsche Patentanmeldung DE 199 42 856 A1 (1999).

H. E. Edgerton, Electronic Flash, Strobe (MIT Press, 1970).

G. S. Settles, “The Penn State full-scale schlieren system,” in Proceedings 11th International Symposium on Flow Visualization, T. Mueller and I. Grant, eds. (IOP2004), paper 76.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Diagram of Edgerton’s direct shadowgraph technique. Note that the camera is off-axis with respect to the light source, resulting in a double shadow in the image.

Fig. 2
Fig. 2

Shadowgrams of a candle plume from (a) Edgerton’s noncoincident configuration and (b) from a coincident setup. The noncoincident configuration (a) results in both the actual object and its shadow being present in the image. The physical candle is on the right within frame (a), and the shadowgram is on the left.

Fig. 3
Fig. 3

Diagrams of the coincident illumination setups for retroreflective shadowgraphy, using (a) a beam splitter, (b) a mirror with a “pinhole,” and (c) a rod mirror.

Fig. 4
Fig. 4

(a) Oblique side view of the camera/illuminator assembly, with vertical plates used as beam stops. (b) APX-RS digital camera with a 20 70 mm Nikon zoom lens and the rod mirror mounted on a clear lens filter . (c) An explosive charge is suspended by a wire in the foreground while the author (MJH) stands before the retroreflective screen in the background, on which the shadowgram of the suspended charge can be observed.

Fig. 5
Fig. 5

Digital image series showing shadowgrams of a 1 g TATP explosion.

Fig. 6
Fig. 6

Schematic highlighting the geometric correction required when analyzing retroreflective shadowgrams of a spherical shock wave. The shock wave will be visible only when it is perpendicular to the diverging light rays from the source.

Fig. 7
Fig. 7

Schematic of the visibility of the shock waves produced by explosions located off the optical axis.

Fig. 8
Fig. 8

Image sequence of planar shock wave propagation from a fireworks display, impinging on the author (GSS). The shock appears defocused in the leftmost and rightmost images, while it is sharp in the center two images, due to its alignment with the diverging light rays of the shadowgraph illumination.

Fig. 9
Fig. 9

(a) Image of an RP-83 detonator approximately 400 μs after detonation and (b) a 0.45 kg C-4 charge about 1ms after detonation, both with 1 μs frame exposures.

Fig. 10
Fig. 10

Six consecutive shadowgrams of the firing of a Remingtion .30–06 high-powered rifle.

Fig. 11
Fig. 11

Schlieren image of the firing of a Remington .30–06 high-powered rifle using the Penn State full-scale schlieren system.

Fig. 12
Fig. 12

Optical setup used for thermal plume imaging.

Fig. 13
Fig. 13

Shadowgrams showing the thermal plume of a barbecue grill (a) with the top down and (b) up. The highlighted region of frame (a) is reproduced in the inset, showing Kelvin–Helmholtz vortices. A slight left-to-right breeze in frame (b) carries the thermal plume from the grill into the face of the author (MJH).

Metrics