Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved sensitivity gas detection by spontaneous Raman scattering

Not Accessible

Your library or personal account may give you access

Abstract

Accurate, real-time measurement of the dilute constituents of a gaseous mixture poses a significant challenge usually relegated to mass spectrometry. Here, spontaneous Raman backscattering is used to detect low pressure molecular gases. Rapid detection of gases in the 100partsin106(ppm) range is described. Improved sensitivity is brought about by use of a hollow-core, photonic bandgap fiber gas cell in the backscattering configuration to increase collection efficiency and an image-plane aperture to greatly reduce silica-Raman background noise. Spatial and spectral properties of the silica noise were examined with a two-dimensional CCD detector array.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber

Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff
Appl. Opt. 47(23) 4255-4261 (2008)

Antiresonant fiber-enhanced Raman spectroscopy gas sensing with 1 ppm sensitivity

Minghong Yang, Zhixiong Liu, Lingxi Xiong, Qilu Nie, Yingying Wang, Shoufei Gao, Mengen Cheng, Dexun Yang, Shilong Pei, and Donglai Guo
Opt. Express 32(3) 4093-4101 (2024)

Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces

George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook
Appl. Opt. 38(9) 1467-1475 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.