Abstract

Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi–Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2πrad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  2. Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
    [CrossRef]
  3. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  4. W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
    [CrossRef]
  5. http://www.inphase-technologies.com/news/06_june19_RadTech.asp?subn=6_2
  6. D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
    [CrossRef]
  7. Y. Boiko, V. Slovjev, S. Calixto, and D. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787-793 (1994).
    [CrossRef] [PubMed]
  8. D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).
  9. T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).
  10. C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996).
    [CrossRef]
  11. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  12. P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
    [CrossRef]
  13. J. Neumann, K. S. Wieking, and D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Appl. Opt. 38, 5418-5421 (1999).
    [CrossRef]
  14. X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
    [CrossRef]
  15. D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
    [CrossRef]
  16. M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
    [CrossRef]
  17. K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
    [CrossRef]
  18. K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
    [CrossRef]
  19. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003).
    [CrossRef] [PubMed]
  20. S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
    [CrossRef]
  21. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
    [CrossRef] [PubMed]
  22. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
    [CrossRef] [PubMed]
  23. S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
    [CrossRef]
  24. M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
    [CrossRef]
  25. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
    [CrossRef]
  26. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
    [CrossRef]
  27. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
    [CrossRef]

2008 (2)

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

2007 (4)

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

2005 (2)

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
[CrossRef]

2003 (3)

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003).
[CrossRef] [PubMed]

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
[CrossRef]

2001 (4)

Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
[CrossRef]

D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
[CrossRef]

2000 (2)

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

1999 (3)

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

J. Neumann, K. S. Wieking, and D. Kip, “Direct laser writing of surface reliefs in dry, self-developing photopolymer films,” Appl. Opt. 38, 5418-5421 (1999).
[CrossRef]

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
[CrossRef]

1996 (1)

C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996).
[CrossRef]

1994 (1)

Alvarez, M. L.

Anderson, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Arvydas, P.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Asta, G.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Ayer, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Beléndez, A.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003).
[CrossRef] [PubMed]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Bergman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Boiko, Y.

Bouz, M. E.

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
[CrossRef]

Calixto, S.

Campos, J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Cottin, P.

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

Croutxe-Barghorn, C.

C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996).
[CrossRef]

Curtis, K. R.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Dantsker, D.

D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
[CrossRef]

Davis, J. A.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

Downey, M.

Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
[CrossRef]

Earhart, T.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Fernández, E.

Fimia, A.

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Gallego, S.

Giedrius, J.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Goss, K.

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

H, D.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
[CrossRef]

Heggarty, K.

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

Hertrich, G.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Hill, A. J.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Howard, R. G.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Iemmi, C.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

Jallapuram, R.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Kathman, A. D.

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).

Kessels, M. V.

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

Kip, D.

Knystautas, É. J.

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

Kumar, J.

D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
[CrossRef]

Lawrence, J. R.

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Lessard, R. A.

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

Li, X. T.

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
[CrossRef]

Loechel, W.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Lougnot, D.

C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996).
[CrossRef]

Y. Boiko, V. Slovjev, S. Calixto, and D. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787-793 (1994).
[CrossRef] [PubMed]

Malang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Márquez, A.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Martin, S.

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

Méndez, D.

Mindaugas, A.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Moreno, I.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

Natansohn, A.

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
[CrossRef]

Naydenova, I.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Neifeld, M. A.

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

Neipp, C.

Neumann, J.

O'Neill, F. T.

Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
[CrossRef]

Ortuño, M.

O'Shea, D. C.

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).

Pagan, R.

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

Pane, M.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Parris, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Pascual, I.

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Real-time interferometric characterization of a PVA based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506-7512 (2007).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. Sheridan, “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835-1843 (2003).
[CrossRef] [PubMed]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Pavani, K.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Potter, M. E.

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

Prather, D. W.

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).

Riley, B.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Rochon, P.

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
[CrossRef]

Roorda, Sjoerd

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

Sheridan,

Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Shuman, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Sigitas, T.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Slovjev, V.

Stanhope, C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Suleski, T. J.

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).

Tackitt, M. C.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Toal, V.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Tripathy, S. K.

D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
[CrossRef]

Turunen, J.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Vytautas, O.

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
[CrossRef]

Wieking, K. S.

Wilson, W. L.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Wolfgang, K.

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Yzuel, M. J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Ziolkowski, R. W.

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

X. T. Li, A. Natansohn, and P. Rochon, “Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell,” Appl. Phys. Lett. 74, 3791-3793 (1999).
[CrossRef]

J. Appl. Phys. (1)

D. Dantsker, J. Kumar, and S. K. Tripathy, “Optical alignment of liquid crystals,” J. Appl. Phys. 89, 4318-4325 (2001).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

M. V. Kessels, M. E. Bouz, R. Pagan, and K. Heggarty, “Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures,” J. Micro/Nanolith. MEMS MOEMS 6, 033002 (2007).
[CrossRef]

J. Microlith. Microfab. Microsyst. (1)

T. Sigitas, J. Giedrius, G. Asta, P. Arvydas, O. Vytautas, and A. Mindaugas, “Optical characterization of diffractive optical elements replicated in polymers,” J. Microlith. Microfab. Microsyst. 5, 807-814 (2006).

J. Opt. A Pure Appl. Opt. (3)

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20-25 (2001)
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 9, 43-48 (2007).
[CrossRef]

Sheridan, M. Downey, and F. T. O'Neill, “Diffusion based model of holographic grating formation in photopolymers: generalized non-local material responses,” J. Opt. A Pure Appl. Opt. 3, 477-488 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nucl. Instrum. Methods Phys. Res. B (1)

P. Cottin, R. A. Lessard, É. J. Knystautas, and Sjoerd Roorda, “Polymer waveguides under ion implantation: optical and chemical aspects,” Nucl. Instrum. Methods Phys. Res. B 151, 97-100 (1999).
[CrossRef]

Opt. Commun. (2)

K. Pavani, I. Naydenova, S. Martin, R. Jallapuram, R. G. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

M. E. Potter, K. Goss, M. A. Neifeld, and R. W. Ziolkowski, “Nanostructure surface relief profiles for high-density optical data storage,” Opt. Commun. 253, 56-69 (2005).
[CrossRef]

Opt. Eng. (2)

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39, 1612-1619 (2000).
[CrossRef]

Opt. Express (1)

Phys. Scr. T (1)

S. Gallego, M. Ortuño, I. Pascual, C. Neipp, A. Márquez, and A. Beléndez, “Analysis of second and third diffracted orders in volume diffraction gratings recorded on photopolymers,” Phys. Scr. T T118, 58-60 (2005).
[CrossRef]

Proc. SPIE (2)

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10-25 (2003),
[CrossRef]

W. L. Wilson, K. R. Curtis, K. Anderson, M. C. Tackitt, A. J. Hill, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Parris, K. Malang, B. Riley, and M. Ayer, “Realization of high performance holographic data storage: the inPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Pure Appl. Opt. (1)

C. Croutxe-Barghorn and D. Lougnot, “Use of self-processing dry photopolymers for the generation of relief optical elements: a photochemical study,” Pure Appl. Opt. 5, 811-825 (1996).
[CrossRef]

Other (4)

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

http://www.inphase-technologies.com/news/06_june19_RadTech.asp?subn=6_2

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication and Test (SPIE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Normalized phase profiles. (a) Fermi–Dirac profiles for different values of α and for Ω = 0.5 (symmetric gratings). (b) Super-Gaussian and Fermi–Dirac best fits to a cosine function, where we show that the Fermi–Dirac function (with α = 3.3 ) provides a very good approximation.

Fig. 2
Fig. 2

Experimental setup (transmission measurements). The recording material is exposed to the green laser beam ( λ = 532 nm ) and diffracted efficiencies are generated with the red beam ( λ = 633 nm ). P correspond to the polarizers and WP to the wave plate.

Fig. 3
Fig. 3

Image captured by CCD camera when a grating with 0.672 mm of period is recorded.

Fig. 4
Fig. 4

Diffraction efficiencies of the first four orders for different gratings periods [0.168, 0.336, and 0.672 mm correspond to (a), (b), and (c), respectively] as a function of the exposition time ( 105 μm thick, without cross-linker, in transmission).

Fig. 5
Fig. 5

Diffraction efficiencies of the first four orders for different gratings periods [0.168, 0.336, and 0.672 mm corespond to (a), (b), and (c), respectively] as a function of the exposition time ( 105 μm thick, with cross-linker, in transmission).

Fig. 6
Fig. 6

Diffraction efficiencies of the first four reflected orders for different gratings periods [0.168 and 0.336 mm correspond to (a) and (b), respectively] as a function of the exposition time ( 105 μm thick, without cross-linker, in reflection).

Fig. 7
Fig. 7

Sum of diffraction efficiencies of the first eight reflected orders for different values of α and phase depth.

Fig. 8
Fig. 8

Diffraction efficiencies of the first four reflected orders for a gratings period of 0.168 mm as a function of the exposition time ( 105 μm thick, with cross-linker, in reflection).

Fig. 9
Fig. 9

Fitted phase profiles for different exposure times using Fermi–Dirac distribution ( 105 μm thick, without cross-linker, in transmission). (a) Spatial period of 0.168 mm . (b) Spatial period of 0.672 mm . (c) Search for the optimum phase profile after 240 s of exposure for a layer with a cross-linker.

Fig. 10
Fig. 10

Fitted phase profiles for different exposure times using Fermi–Dirac distribution ( 105 μm thick, with cross-linker, in transmission). (a) Spatial period of 0.168 mm . (b) Spatial period of 0.672 mm .

Fig. 11
Fig. 11

Fitted surface profiles for different exposure times using Fermi–Dirac distribution ( 105 μm thick with a spatial period of 0.672 mm , in reflection) (a) without cross-linker and (b) with cross-linker. (c) Search for the optimum phase profile after 40 s of exposure for a layer with a cross-linker.

Tables (2)

Tables Icon

Table 1 Diffraction Efficiencies of the First Nine Orders for a Grating With a Period of 0.168 mm (Without Cross-Linker)

Tables Icon

Table 2 Summary of the Values of DE 1 max and PD max Obtained for Each Spatial Period and Composition

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t ( x ) = exp ( i φ ( x ) ) ,
φ ( x ) = φ 0 ( 1 + exp ( α · ( | x | Ω 1 ) ) ) 1 ,
x = D t = 0.05 mm .

Metrics