Abstract

An aspherical lens is fabricated from an ultraviolet (UV) curable polymer and is characterized by measuring its focal spot. Electrostatic force is employed to manipulate the shape of the liquid polymer lens. Experiment results show that a liquid lens in a strong electrostatic field can be distorted from initial spherical shape to parabolic to even near cone shape. With in situ measurement of the surface profile and focal spot, an aspherical liquid lens with good performance can be cured to a solid aspherical lens by UV light. A probe scanning microscope is employed to accurately measure the focal spot of the aspherical lens, and the modulation transfer function (MTF) of the aspherical lens is calculated to characterize it. A focal spot of 1.825μm diameter, an MTF of 800 line pairs/mm cutoff spatial frequency, and a Strehl ratio of 0.742 are achieved. These demonstrate the feasibility of fabricating an aspherical lens with small aberrations by using this method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613-615(1981).
    [CrossRef] [PubMed]
  2. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
    [CrossRef]
  3. F. T. O'Neill and J. T. Sheridan, “Photoresist reflow method of microlens production. Part 1: Background and experiments,” Optik (Jena) 113, 391-404 (2002).
    [CrossRef]
  4. C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
    [CrossRef]
  5. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
    [CrossRef]
  6. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
    [CrossRef]
  7. B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
    [CrossRef]
  8. J. Zeleny, “Instability of electrified liquid surfaces,” Phys. Rev. 10, 1-6 (1917).
    [CrossRef]
  9. F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
    [CrossRef]
  10. C. Chen and F. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 376-379.
  11. P. G. Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827-863 (1985).
    [CrossRef]
  12. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
    [CrossRef]
  13. Z. Zhan and K. Wang, “Fabrication of aspherical liquid lens controlled by electrostatic force,” Proc. SPIE 6722, 67224P (2007).
    [CrossRef]
  14. K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
    [CrossRef]
  15. J. W. Goodman, “Introduction to Fourier Optics" (McGraw-Hill, 1996).
  16. B. T. Teipen and D. L. Macfarlane, “Modulation transfer function measurement of microjetted microlenses,” Appl. Opt. 38, 2040-2046 (1999).
    [CrossRef]
  17. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
    [CrossRef]

2007 (1)

Z. Zhan and K. Wang, “Fabrication of aspherical liquid lens controlled by electrostatic force,” Proc. SPIE 6722, 67224P (2007).
[CrossRef]

2006 (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

2005 (2)

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
[CrossRef]

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

2002 (1)

F. T. O'Neill and J. T. Sheridan, “Photoresist reflow method of microlens production. Part 1: Background and experiments,” Optik (Jena) 113, 391-404 (2002).
[CrossRef]

2001 (1)

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

2000 (3)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

1999 (1)

1996 (1)

K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
[CrossRef]

1985 (1)

P. G. Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827-863 (1985).
[CrossRef]

1981 (1)

1917 (1)

J. Zeleny, “Instability of electrified liquid surfaces,” Phys. Rev. 10, 1-6 (1917).
[CrossRef]

Abdella, K.

K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
[CrossRef]

Ando, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

Arai, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

Berge, B.

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

Chen, C.

C. Chen and F. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 376-379.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Fujita, T.

Gennes, P. G.

P. G. Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827-863 (1985).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Introduction to Fourier Optics" (McGraw-Hill, 1996).

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

Inculet, I. I.

K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
[CrossRef]

Ishii, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

Koike, S.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

Koyama, J.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Macfarlane, D. L.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Merz, R.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Nishihara, H.

O'Neill, F. T.

F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
[CrossRef]

F. T. O'Neill and J. T. Sheridan, “Photoresist reflow method of microlens production. Part 1: Background and experiments,” Optik (Jena) 113, 391-404 (2002).
[CrossRef]

Ossmann, C.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Owen, G.

F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

Quilliet, C.

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

Rasmussen, H.

K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
[CrossRef]

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Schilling, A.

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

Sheridan, J. T.

F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
[CrossRef]

F. T. O'Neill and J. T. Sheridan, “Photoresist reflow method of microlens production. Part 1: Background and experiments,” Optik (Jena) 113, 391-404 (2002).
[CrossRef]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Teipen, B. T.

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Tseng, F.

C. Chen and F. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 376-379.

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Vanas, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Volkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Wang, K.

Z. Zhan and K. Wang, “Fabrication of aspherical liquid lens controlled by electrostatic force,” Proc. SPIE 6722, 67224P (2007).
[CrossRef]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Zeleny, J.

J. Zeleny, “Instability of electrified liquid surfaces,” Phys. Rev. 10, 1-6 (1917).
[CrossRef]

Zhan, Z.

Z. Zhan and K. Wang, “Fabrication of aspherical liquid lens controlled by electrostatic force,” Proc. SPIE 6722, 67224P (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Comput. Math. Appl. (1)

K. Abdella, H. Rasmussen, and I. I. Inculet, “Interfacial deformation of liquid drops by electric fields at zero gravity,” Comput. Math. Appl. 31, 67-82 (1996).
[CrossRef]

Curr. Opin. Colloid Interface Sci. (1)

C. Quilliet and B. Berge, “Electrowetting: a recent outbreak,” Curr. Opin. Colloid Interface Sci. 6, 34-39 (2001).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A Pure Appl. Opt. 8, S407-S429 (2006).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “Ink-jet fabrication of polymer microlens for optical-I/O chip packaging,” Jpn. J. Appl. Phys. Part 1 39, 1490-1493 (2000).
[CrossRef]

Opt. Eng. (1)

A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng. 39, 2171-2176 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. Vanas, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Optik (Jena) (2)

F. T. O'Neill and J. T. Sheridan, “Photoresist reflow method of microlens production. Part 1: Background and experiments,” Optik (Jena) 113, 391-404 (2002).
[CrossRef]

F. T. O'Neill, G. Owen, and J. T. Sheridan, “Alteration of the profile of ink-jet-deposited UV-cured lenses using applied electric fields,” Optik (Jena) 116, 158-164 (2005).
[CrossRef]

Phys. Rev. (1)

J. Zeleny, “Instability of electrified liquid surfaces,” Phys. Rev. 10, 1-6 (1917).
[CrossRef]

Proc. SPIE (1)

Z. Zhan and K. Wang, “Fabrication of aspherical liquid lens controlled by electrostatic force,” Proc. SPIE 6722, 67224P (2007).
[CrossRef]

Rev. Mod. Phys. (1)

P. G. Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57, 827-863 (1985).
[CrossRef]

Other (2)

J. W. Goodman, “Introduction to Fourier Optics" (McGraw-Hill, 1996).

C. Chen and F. Tseng, “Tunable micro-aspherical lens manipulated by 2D electrostatic forces,” Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2005), pp. 376-379.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of an aspherical lens fabrication setup.

Fig. 2
Fig. 2

Surface profile images of a liquid lens in different electrostatic fields.

Fig. 3
Fig. 3

Comparison of surface profiles of a liquid lens in increasing electrostatic fields.

Fig. 4
Fig. 4

Principle curvatures in increasing electrostatic fields.

Fig. 5
Fig. 5

Comparison of surface profiles of an aspherical lens before and after curing.

Fig. 6
Fig. 6

Schematic diagram of a probe scanning microscope.

Fig. 7
Fig. 7

Spot sizes of an aspherical lens at different axis positions.

Fig. 8
Fig. 8

(a) Focal spot and (b) PSF of aspherical lens.

Fig. 9
Fig. 9

MTF of aspherical lens; lp, line pairs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z = C r 2 1 + 1 ( K + 1 ) C 2 r 2 + a r 4 + b r 6 + c r 8 .
Ra = 1.22 λ ( f - number ) = 1.325 μm .

Metrics