Abstract

Three-dimensional (3D) optical coherence tomography (OCT) images of rat brain taken through the thinned skull were measured using quadrature fringe wide-field OCT (QF WF OCT) with a period of 10min for total measurement time of 210min stopping blood flow due to cardiac arrest, in order to investigate the potential of OCT to monitor tissue viability in brains. First, spatial resolution degradation was evaluated with QF WF OCT to demonstrate that the axial resolution was 390μm at a thickness of 1000μm. After cardiac arrest, the signal intensity in depth profiles increased 2.7 times compared with that before cardiac arrest. The ratio of signal intensity after euthanasia with an injection of pentobarbital sodium salt to that before sharply increased for 20min, with stationary values of 2 to 4 overall. The trends of time variations of each position were similar. However, each stationary value depended on the 3D position.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
    [CrossRef] [PubMed]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
    [CrossRef]
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
    [PubMed]
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
    [CrossRef]
  7. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillete, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218-1220 (2003).
    [CrossRef] [PubMed]
  8. R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
    [CrossRef] [PubMed]
  9. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
    [CrossRef]
  10. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
    [CrossRef]
  11. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31, 3459-3461 (2006).
    [CrossRef] [PubMed]
  12. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308-2310 (2006).
    [CrossRef] [PubMed]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164-4176 (2008).
    [CrossRef] [PubMed]
  14. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059-2064(2002).
    [CrossRef] [PubMed]
  15. G. J. Terney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995).
    [CrossRef]
  16. T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express 13, 1860-1874(2005).
    [CrossRef] [PubMed]
  17. S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
    [CrossRef] [PubMed]
  18. G.Paxinos ed., The Rat Nervous System (Elsevier, 2004).
  19. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959).
    [CrossRef] [PubMed]
  20. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
    [CrossRef]
  21. X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
    [CrossRef] [PubMed]
  22. F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
    [CrossRef]
  23. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
    [CrossRef]
  24. D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
    [PubMed]

2008

2007

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

2006

2005

T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express 13, 1860-1874(2005).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

2004

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

2003

M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillete, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28, 1218-1220 (2003).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
[CrossRef] [PubMed]

2002

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059-2064(2002).
[CrossRef] [PubMed]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

1998

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

1995

1993

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

1980

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

1959

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959).
[CrossRef] [PubMed]

Abraham, E.

Aguirre, A. D.

Ascenzi, A.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959).
[CrossRef] [PubMed]

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Boppart, S. A.

Bordenave, E.

Bouma, B. E.

Brezinski, M. E.

Budka, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Dabu, R.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Devor, A.

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Dory, Y.

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

Drexler, W.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Duker, J. S.

Eglinton, D. G.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Fabry, C.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959).
[CrossRef] [PubMed]

Fercher, A. F.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

Fijii, F.

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Frostig, R. D.

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gillete, R.

Gooding, P. E.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Greenwood, C.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Haj, A. E.

X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
[CrossRef] [PubMed]

Hee, M. R.

G. J. Terney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258-2260 (1995).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Hillman, T. R.

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hung, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Ishihara, M.

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Johnson, M. K.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Jonusauskas, G.

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Kawauchi, S.

Kikuchi, M.

Kwon, M. C.

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

Lassegues, M.

Lazebnik, M.

Le, A. S. T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Marks, D. L.

Masino, S. A.

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Minot, P. E.

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Nagata, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Nawashiro, H.

Neagu, L.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Niizuma, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Nishimura, G.

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

Nodasaka, Y.

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

Oberle, J.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Ooigawa, H.

Potgieter, K.

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Preusser, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Rollins, A. M.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Rulliere, C.

Ruvinskaya, L.

Sampson, D. D.

Sato, M.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Sato, S.

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Sattman, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

Southern, J. F.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Surleve, J. E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Tamura, M.

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Terney, G. J.

Thomson, A. J.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Ts'o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

Tsurumachi, N.

Unterhuber, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

Wang, R. K.

X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
[CrossRef] [PubMed]

Watanabe, Y.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

Wojtkowski, M.

Xu, X.

X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
[CrossRef] [PubMed]

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Appl. Opt.

Biochem. J.

D. G. Eglinton, M. K. Johnson, A. J. Thomson, P. E. Gooding, and C. Greenwood, “Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase,” Biochem. J. 191, 319-331 (1980).
[PubMed]

Brain Res.

F. Fijii, Y. Nodasaka, G. Nishimura, and M. Tamura, “Anoxia induces matrix shrinkage accompanied by an increase in light scattering in isolated brain mitochondria,” Brain Res. 999, 29-39 (2004).
[CrossRef]

Clin. Hemorheol. Microcirc.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvesssels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31-40 (2004).
[PubMed]

Eur. Biophys. J.

X. Xu, R. K. Wang, and A. E. Haj, “Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring,” Eur. Biophys. J. 32, 355-362 (2003).
[CrossRef] [PubMed]

J Biomed. Opt.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J Biomed. Opt. 9, 719-724 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006 (2005).
[CrossRef]

J. Biophys. Biochem. Cytol.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139-142 (1959).
[CrossRef] [PubMed]

J. Neurosci. Meth.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Meth. 154, 96-101 (2006).
[CrossRef]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Meth. 124, 83-92 (2003).
[CrossRef]

Opt. Commun.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573-580 (2007).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47-54 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, ” Proc. Natl. Acad. Sci. USA 87, 6082-6086 (1990).
[CrossRef] [PubMed]

S. A. Masino, M. C. Kwon, Y. Dory, and R. D. Frostig, “Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull,” Proc. Natl. Acad. Sci. USA 90, 9998-10002 (1993).
[CrossRef] [PubMed]

Proc. SPIE

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, “Optical properties of circulating human blood,” Proc. SPIE 3252, 70-82 (1998).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

B.Bouma and J.Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

G.Paxinos ed., The Rat Nervous System (Elsevier, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic of the measurement system consisting of a quadrature fringe wide-field OCT, a laser displacement sensor, and a bioamplifier. SLD, superluminescence diode; CL, collimator lens; P, polarizer; BS, beam splitter; HM, hot mirror; QWP, quarter-wave plate; WP, Wollaston prism; LDS, laser displacement sensor; BA, bioamplifier; DO, digital oscilloscope.

Fig. 2
Fig. 2

(a) Typical resliced X Z 4 mm × 1.3 mm ( X × Z ) image. (b) Signal intensity profile indicated by the dotted line in (a).

Fig. 3
Fig. 3

(a) Typical resliced X Z 4 mm × 4 mm ( X × Z ) image. (b) Signal intensity profile indicated by the dotted line in (a).

Fig. 4
Fig. 4

(a) Measured refractive index as a function of thickness. (b) Axial resolution degradation as a function of thickness.

Fig. 5
Fig. 5

En face OCT images of the test pattern and intensity profiles. The intensity profile indicated by a pair of arrows, is depicted below. The thicknesses of the spacers are (a)  300 μm , (b)  600 μm , and (c)  900 μm .

Fig. 6
Fig. 6

Degradation as a function of spacer thickness.

Fig. 7
Fig. 7

Variation of peak voltage with time in an electro cardiogram.

Fig. 8
Fig. 8

Variation of measured signals with time (a) at the first measurement with an electrocardiogram and (b) at cardiac arrest.

Fig. 9
Fig. 9

Photograph of a thinned skull. The dotted rectangle area is 4 mm × 4 mm . M, medial; R, rostral.

Fig. 10
Fig. 10

Variation of displacement of a thinned skull with time (a) at the first measurement and (b) at cardiac arrest.

Fig. 11
Fig. 11

Power spectrum of variations of displacements with time (a) at the first measurement and (b) at cardiac arrest.

Fig. 12
Fig. 12

Averaged image by 400 en face X Y OCT images measured from the surface to a depth of 2.8 mm . The image area is 4 mm × 4 mm .

Fig. 13
Fig. 13

Resliced sectional images in the Y Z plane through point C in Fig. 12 (a) at the first measurement and (b) at 210 min .

Fig. 14
Fig. 14

(a) Depth profiles of signal intensity at point A in Fig. 12. Here (b) to (e) correspond to points B to E.

Fig. 15
Fig. 15

Ratio of the signal intensity depth profile at 210 min to that at the first measurement in Fig. 14c.

Fig. 16
Fig. 16

Variations of ratio of signal intensity with time in (a) Region I and (b) Region II. Curves A to E correspond to points A to E in Fig. 12.

Fig. 17
Fig. 17

Variation of signal intensity ratio with time for Rats 1, 2, and 3.

Fig. 18
Fig. 18

Signal intensity depth profiles at measurement points 1 and 2 in Fig. 17.

Tables (1)

Tables Icon

Table 1 Ratios of Averaged Signal Intensity at 210 min to That at the Start at Points A to E in Regions I and II

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| I I , I I I B G | 210 MIN | I I , I I I B G | START .
I S = I I R L exp { 2 ( μ a + μ s ) z } ,

Metrics