Abstract

We characterize Slavich PFG-04 dichromated gelatin plates to make transmission volume holographic elements recorded with a 532nm laser source, obtaining high efficiency gratings with a high signal to noise ratio. The linear dynamic range of the material is studied by measuring the efficiency of multiplexed gratings. Results obtained are applied to the recording of holographic elements with high efficiency when they are illuminated with a 800nm light source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Colburn, “Review of materials for holographic optics,” J. Imag. Sci. Technol. 41, 443-456 (1997).
  2. C. G. Stojanoff, “The effects of the film manufacturing techniques, of the exposure procedures and of the development and post-treatment thermochemical processes on the holographic properties of HOEs in DCG,” Proc. SPIE 6252, 62521V (2006).
    [CrossRef]
  3. J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407-2417 (1979).
    [CrossRef] [PubMed]
  4. P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
    [CrossRef]
  5. K. Kurokawa, S. Koike, S. Namba, T. Mizuno, and T. Kubota, “Simplified method for preparing methylene blue-sensitized dichromated gelatin,” Appl. Opt. 37, 3038-3043 (1998).
    [CrossRef]
  6. D. Pantelic and B. Muric, “Improving the holograph sensitivity of dichromated gelatin in the blue-green part of spectrum by sensitization with xanthene dyes,” Appl. Opt. 40, 2871-2875 (2001).
    [CrossRef]
  7. P. Smid and H. Hiklová, “Influence of air humidity on spectral response of holographic interference filter recorded into dichromated gelatin,” Fine Mech. Opt. Sci.-Tech. J. 50, 17-19(2005).
  8. N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
    [CrossRef]
  9. H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
    [CrossRef]
  10. T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
    [CrossRef]
  11. P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).
  12. U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
    [CrossRef]
  13. C. G. Stojanoff, “Engineering applications of HOEs manufactured with enhanced performance DCG films,” Proc. SPIE 6136, 613601 (2006).
    [CrossRef]
  14. R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
    [CrossRef]
  15. N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
    [CrossRef]
  16. J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
    [CrossRef]
  17. J. K. Rhee, T. S. Sosnowski, T. B. Norris, J. A. Arns, and W. S. Colburn, “Chirped-pulse amplification of 85 fs pulses at 250 kHz with third-order dispersion compensation by use of holographic transmission gratings,” Opt. Lett. 19, 1550-1552 (1994).
    [CrossRef] [PubMed]
  18. I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
    [CrossRef]
  19. H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1993).
  20. G. Saxby, Practical Holography (Institute of Physics, 2004).
  21. Geola technical product specifications and sales information brochure (2001), http://www.geola.com.
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  23. M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
    [CrossRef]
  24. M. V. Collados, A. M. López, J. Atencia, and M. Quintanilla, “Partitioned-field holographic lenses composed of three uniaxial systems,” Appl. Opt. 42, 6445-6451 (2003).
    [CrossRef] [PubMed]
  25. M. Quintanilla, A. M. de Frutos, and I. Arias, “Characterization of volume and phase holographic gratings,” Appl. Opt. 23, 214-217 (1984).
    [CrossRef] [PubMed]

2008 (1)

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

2006 (4)

C. G. Stojanoff, “Engineering applications of HOEs manufactured with enhanced performance DCG films,” Proc. SPIE 6136, 613601 (2006).
[CrossRef]

R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

C. G. Stojanoff, “The effects of the film manufacturing techniques, of the exposure procedures and of the development and post-treatment thermochemical processes on the holographic properties of HOEs in DCG,” Proc. SPIE 6252, 62521V (2006).
[CrossRef]

N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
[CrossRef]

2005 (2)

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

P. Smid and H. Hiklová, “Influence of air humidity on spectral response of holographic interference filter recorded into dichromated gelatin,” Fine Mech. Opt. Sci.-Tech. J. 50, 17-19(2005).

2004 (3)

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

2003 (1)

2001 (1)

2000 (1)

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

1998 (1)

1997 (1)

W. S. Colburn, “Review of materials for holographic optics,” J. Imag. Sci. Technol. 41, 443-456 (1997).

1994 (1)

1993 (1)

N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
[CrossRef]

1992 (1)

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

1988 (1)

H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
[CrossRef]

1984 (1)

1979 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Arias, I.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

M. Quintanilla, A. M. de Frutos, and I. Arias, “Characterization of volume and phase holographic gratings,” Appl. Opt. 23, 214-217 (1984).
[CrossRef] [PubMed]

Arns, J. A.

Atencia, J.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

M. V. Collados, A. M. López, J. Atencia, and M. Quintanilla, “Partitioned-field holographic lenses composed of three uniaxial systems,” Appl. Opt. 42, 6445-6451 (2003).
[CrossRef] [PubMed]

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1993).

Blanche, P. A.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Böttger, F.

H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
[CrossRef]

Breitkopf, P.

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

Chang, J.

Chateau, N.

N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
[CrossRef]

Chavel, P.

N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
[CrossRef]

Chen, L.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

Chevallier, R.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Colburn, W. S.

Collados, M. V.

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

M. V. Collados, A. M. López, J. Atencia, and M. Quintanilla, “Partitioned-field holographic lenses composed of three uniaxial systems,” Appl. Opt. 42, 6445-6451 (2003).
[CrossRef] [PubMed]

Collados, V.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Collischon, M.

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

de Frutos, A. M.

Dong, G.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

Gailly, P.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Guo, X.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

Habraken, S.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Heggarty, K.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Hiklová, H.

P. Smid and H. Hiklová, “Influence of air humidity on spectral response of holographic interference filter recorded into dichromated gelatin,” Fine Mech. Opt. Sci.-Tech. J. 50, 17-19(2005).

Islamb, Q. T.

N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
[CrossRef]

Jamar, C.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Kobolla, U.

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Koike, S.

Kubota, T.

Kurokawa, K.

Lemaire, P.

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Leonard, C. D.

Li, J.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

López, A. M.

Loukina, T.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Ma, R.

R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Massenot, S.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Méndez, C.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Mizuno, T.

Mohana, N. K.

N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
[CrossRef]

Muric, B.

Namba, S.

Norris, T. B.

Pantelic, D.

Plaja, L.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Quintanilla, M.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

M. V. Collados, A. M. López, J. Atencia, and M. Quintanilla, “Partitioned-field holographic lenses composed of three uniaxial systems,” Appl. Opt. 42, 6445-6451 (2003).
[CrossRef] [PubMed]

M. Quintanilla, A. M. de Frutos, and I. Arias, “Characterization of volume and phase holographic gratings,” Appl. Opt. 23, 214-217 (1984).
[CrossRef] [PubMed]

Rastogic, P. K.

N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
[CrossRef]

Rhee, J. K.

Roso, L.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Ruiz, C.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Saget, J. C.

N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
[CrossRef]

San Román, J.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Saxby, G.

G. Saxby, Practical Holography (Institute of Physics, 2004).

Schmidt, J.

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Schwider, J.

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

Sheridan, J.

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Shigapova, N. M.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Skochilov, A. F.

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

Smid, P.

P. Smid and H. Hiklová, “Influence of air humidity on spectral response of holographic interference filter recorded into dichromated gelatin,” Fine Mech. Opt. Sci.-Tech. J. 50, 17-19(2005).

Sola, I. J.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Sosnowski, T. S.

Stojanoff, C. G.

C. G. Stojanoff, “Engineering applications of HOEs manufactured with enhanced performance DCG films,” Proc. SPIE 6136, 613601 (2006).
[CrossRef]

C. G. Stojanoff, “The effects of the film manufacturing techniques, of the exposure procedures and of the development and post-treatment thermochemical processes on the holographic properties of HOEs in DCG,” Proc. SPIE 6252, 62521V (2006).
[CrossRef]

H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
[CrossRef]

Streibl, N.

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Tam, W. Y.

R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Tholl, H. D.

H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
[CrossRef]

Tornos, J.

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

Villamarín, A.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Volkel, R.

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

Xu, J.

R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Zhu, J.

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

Appl. Opt. (5)

Appl. Phy. B (1)

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phy. B 91, 115-118 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. Ma, J. Xu, and W. Y. Tam, “Wide band gap photonic structures in dichromate gelatine emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Fine Mech. Opt. Sci.-Tech. J. (1)

P. Smid and H. Hiklová, “Influence of air humidity on spectral response of holographic interference filter recorded into dichromated gelatin,” Fine Mech. Opt. Sci.-Tech. J. 50, 17-19(2005).

J. Imag. Sci. Technol. (1)

W. S. Colburn, “Review of materials for holographic optics,” J. Imag. Sci. Technol. 41, 443-456 (1997).

J. Mod. Opt. (2)

P. Breitkopf, M. Collischon, J. Schmidt, and J. Schwider, “Holographically recorded axicon for grazing incidence interferometry,” J. Mod. Opt. 47, 701-710 (2000).

U. Kobolla, J. Schmidt, J. Sheridan, N. Streibl, and R. Volkel, “Holographic optical beam splitters in dichromated gelatin,” J. Mod. Opt. 39, 881-887 (1992).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Zhu, G. Dong, X. Guo, L. Chen, and J. Li, “Methylene-blue sensitized dichromated gelatin: wide-range colour adjustment of reflection hologram,” J. Opt. A: Pure Appl. Opt. 6, 132-136 (2004).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. D. Tholl, F. Böttger, and C. G. Stojanoff, “Evaluation of a technique for the design and manufacture of an off-axis holographic lens in dichromated gelatine,” J. Phys. D: Appl. Phys. 21, S99-S101 (1988).
[CrossRef]

Opt. Commun. (1)

M. V. Collados, J. Atencia, J. Tornos, and M. Quintanilla, “Construction and characterization of compound holographic lenses for multichannel one-dimensional Fourier transformation and optical parallel processing,” Opt. Commun. 249, 85-94 (2005).
[CrossRef]

Opt. Eng. (2)

T. Loukina, S. Massenot, R. Chevallier, K. Heggarty, N. M. Shigapova, and A. F. Skochilov, “Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer,” Opt. Eng. 43, 2658-2665(2004).
[CrossRef]

P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43, 2603-2612(2004).
[CrossRef]

Opt. Lasers Eng. (1)

N. K. Mohana, Q. T. Islamb, and P. K. Rastogic, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

C. G. Stojanoff, “Engineering applications of HOEs manufactured with enhanced performance DCG films,” Proc. SPIE 6136, 613601 (2006).
[CrossRef]

C. G. Stojanoff, “The effects of the film manufacturing techniques, of the exposure procedures and of the development and post-treatment thermochemical processes on the holographic properties of HOEs in DCG,” Proc. SPIE 6252, 62521V (2006).
[CrossRef]

Pure Appl. Opt. (1)

N. Chateau, J. C. Saget, and P. Chavel, “Diffraction analysis and experimental investigation of reflection-free holographic phase gratings,” Pure Appl. Opt. 2, 299-314 (1993).
[CrossRef]

Other (3)

H. I. Bjelkhagen, Silver Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1993).

G. Saxby, Practical Holography (Institute of Physics, 2004).

Geola technical product specifications and sales information brochure (2001), http://www.geola.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Microscope image of a grating.

Fig. 2
Fig. 2

Relative (♦) and effective (•) efficiency versus exposure curve.

Fig. 3
Fig. 3

(a) Zero-order effective efficiency versus angle of reconstruction for a transmission grating with maximum efficiency at λ = 532 nm .(b) Theoretical fit (dashed line) to experimental data (continuous line).

Fig. 4
Fig. 4

Index modulation versus exposure of PFG-04 emulsion.

Fig. 5
Fig. 5

(a) Sequential recording of two transmission gratings showing construction beams for first grating ( 1 , 1 ) and second grating ( 2 , 2 ) . (b) Zero order efficiency curves for two multiplexed transmission gratings.

Fig. 6
Fig. 6

(a) Sequential recording of three transmission gratings. (b) Zero order effective efficency curves for three multiplexed transmission grating with maximum efficiency at λ = 532 nm .

Fig. 7
Fig. 7

(a) Zero-order efficiency versus wavelength curve of a grating recorded with a wavelength of 532 nm with an exposure of 2975 mJ / cm 2 when the reconstruction angle is 11 ° . (b) Zero-order efficiency versus wavelength curve of a grating recorded with a wavelength of 532 nm with an exposure of 2975 mJ / cm 2 when the reconstruction angle is 17 ° .

Fig. 8
Fig. 8

Zero order effective efficiency curve versus reconstruction angle of a grating recorded with 532 nm and reconstructed with 800 nm laser source.

Tables (2)

Tables Icon

Table 1 Effects of the Different Index Matching Liquids on Emulsion

Tables Icon

Table 2 Scheme Used to Process Slavich PFG04 Plates

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η e 1 = Φ 1 Φ i ,
η r 1 = Φ 1 Φ 1 + Φ 0 ,
η e 0 = Φ 0 Φ i .
η r 1 = sin 2 ( π n 1 d λ cos θ 1 cos θ 2 ) ,
Δ n = N n 1 + n 1 = ( N + 1 ) n 1 .

Metrics