Abstract

We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree of reproducibility, and a high SERS enhancement can be achieved when the peak extinction wavelength of NIS is tuned to a spectral window (60nm) between the excitation wavelength and the scattered Raman wavelength. The highest SERS enhancement was obtained from the NIS substrates with a nominal thickness of 50Å. Detection of target OND was performed with a sandwich format in which the target OND was hybridized both to a capture OND immobilized on the NIS substrate, and a detection OND conjugated with a Raman-active dye for SERS signal generation. We compare the detection performance of two strategies based on the use of the detection OND with or without the gold nanoparticle (Au-NP). Our results confirm that, when the detection OND is coupled to the Au-NP, a better sensitivity for the target OND detection, in terms of a wider dynamic range and a lower detection limit (0.4fM versus 1nM without Au-NP), would be achieved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Diamandis and T. K. Christopoulous, eds., Immunoassay (Academic, 1996).
  2. G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
    [CrossRef] [PubMed]
  3. M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810-7815 (2005).
    [CrossRef] [PubMed]
  4. J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
    [CrossRef] [PubMed]
  5. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
    [CrossRef] [PubMed]
  6. X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
    [CrossRef] [PubMed]
  7. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
    [CrossRef] [PubMed]
  8. J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
    [CrossRef] [PubMed]
  9. D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
    [CrossRef] [PubMed]
  10. S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128, 15580-15581 (2006).
    [CrossRef] [PubMed]
  11. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018(1998).
    [CrossRef] [PubMed]
  12. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
    [CrossRef] [PubMed]
  13. V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
    [CrossRef] [PubMed]
  14. Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
    [CrossRef] [PubMed]
  15. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  16. C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426-7433 (2003).
    [CrossRef]
  17. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
    [CrossRef]
  18. G. C. Schatz and R. P. Van Duyne, Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 1, pp. 759-774.
  19. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
    [CrossRef]
  20. L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
    [CrossRef]
  21. R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
    [CrossRef]
  22. A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
    [CrossRef] [PubMed]
  23. G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
    [CrossRef]
  24. C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
    [CrossRef]
  25. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
    [CrossRef] [PubMed]
  26. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  27. S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997).
    [CrossRef] [PubMed]
  28. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903-143910 (2005).
    [CrossRef] [PubMed]
  29. W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  30. M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
    [CrossRef] [PubMed]
  31. P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
    [CrossRef]

2007

C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
[CrossRef]

2006

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128, 15580-15581 (2006).
[CrossRef] [PubMed]

2005

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810-7815 (2005).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903-143910 (2005).
[CrossRef] [PubMed]

2004

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

2003

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426-7433 (2003).
[CrossRef]

2002

G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
[CrossRef] [PubMed]

Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

2001

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
[CrossRef]

1999

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

1998

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018(1998).
[CrossRef] [PubMed]

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
[CrossRef] [PubMed]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

1981

P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
[CrossRef]

Alivisatos, A. P.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Alivisatos, P.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

Allain, L. R.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

Bear, D. G.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Bell, S. E. J.

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128, 15580-15581 (2006).
[CrossRef] [PubMed]

Cao, Y-W.

Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Chan, W. C. W.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018(1998).
[CrossRef] [PubMed]

Chen, F. F.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Chinnapen, D. J-F.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Chompoosor, A.

C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
[CrossRef]

Corn, R. M.

G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
[CrossRef] [PubMed]

Cote, R. J.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Culha, M.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Datar, R. H.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

Dorrestein, P. C.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Driskell, J.

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

Elam, J. W.

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

El-Husseini, A.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Gearheart, L. A.

L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
[CrossRef]

Gerion, D.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Gerrow, K.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Grandy, M. R.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Gray, J. W.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Griffin, G. D.

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

Grubisha, D. S.

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

Hansen, K. M.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426-7433 (2003).
[CrossRef]

Hell, S. W.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903-143910 (2005).
[CrossRef] [PubMed]

Henderson, E.

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

Herne, T. M.

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
[CrossRef] [PubMed]

Howarth, M.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jett, S. D.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Jin, R-C.

Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Jones, V. W.

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

Kasili, P. M.

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

Kelleher, N. L.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Kenseth, J. R.

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kunchakarra, S.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Kwarta, K. M.

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

Langer, P. R.

P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
[CrossRef]

Lee, H. J.

G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Levicky, R.

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

Lipert, R. J.

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

Liu, G. L.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Lyandres, O.

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

Majumdar, A.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

Mirkin, C. A.

Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Mosher, C. L.

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

Mukherjee, B.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Murphy, C. J.

L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
[CrossRef]

Nie, S.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018(1998).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997).
[CrossRef] [PubMed]

Park, H.

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Ploehn, H. J.

L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
[CrossRef]

Porter, M. D.

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

Rotello, V. M.

C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
[CrossRef]

Satija, S. K.

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

Schatz, G. C.

G. C. Schatz and R. P. Van Duyne, Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 1, pp. 759-774.

Sirimuthu, N. M. S.

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128, 15580-15581 (2006).
[CrossRef] [PubMed]

Song, J. M.

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

Steel, A. B.

A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
[CrossRef] [PubMed]

Stokes, D.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

Stricker, J. H.

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Tarlov, M. J.

A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
[CrossRef] [PubMed]

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

Thundat, T.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Ting, A. Y.

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Van Duyne, R. P.

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426-7433 (2003).
[CrossRef]

G. C. Schatz and R. P. Van Duyne, Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 1, pp. 759-774.

Vo-Dinh, T.

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810-7815 (2005).
[CrossRef] [PubMed]

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

Wabuyele, M. B.

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810-7815 (2005).
[CrossRef] [PubMed]

Waldrop, A. A.

P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Ward, D. C.

P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Wegner, G. J.

G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903-143910 (2005).
[CrossRef] [PubMed]

Whitney, A. V.

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

Wu, G.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Yin, Y.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

You, C-C.

C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

Zare, R. N.

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

Zhao, J.

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

Anal. Chem

J. M. Song, P. M. Kasili, G. D. Griffin, and T. Vo-Dinh, “Detection of cytochrome c in a single cell using an optical nanobiosensor,” Anal. Chem 76, 2591-2594 (2004).
[CrossRef] [PubMed]

Anal. Chem.

M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196-6201 (2003).
[CrossRef] [PubMed]

J. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Anal. Chem. 77, 6147-6154 (2005).
[CrossRef] [PubMed]

D. S. Grubisha, R. J. Lipert, H. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels,” Anal. Chem. 75, 5936-5943(2003).
[CrossRef] [PubMed]

G. J. Wegner, H. J. Lee and R. M. Corn, “Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging,” Anal. Chem. 74, 5161-5168 (2002).
[CrossRef] [PubMed]

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810-7815 (2005).
[CrossRef] [PubMed]

V. W. Jones, J. R. Kenseth, M. D. Porter, C. L. Mosher, and E. Henderson, “Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays,” Anal. Chem. 70, 1233-1241 (1998).
[CrossRef] [PubMed]

A. B. Steel, T. M. Herne, and M. J. Tarlov, “Electrochemical quantitation of DNA immobilized on gold,” Anal. Chem. 70, 4670-4677 (1998).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567-596 (1997).
[CrossRef] [PubMed]

Chem. Rev.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
[CrossRef]

J. Am. Chem. Soc.

R. Levicky, T. M. Herne, M. J. Tarlov, and S. K. Satija, “Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study,” J. Am. Chem. Soc. 120, 9787-9792 (1998).
[CrossRef]

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128, 15580-15581 (2006).
[CrossRef] [PubMed]

X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, “Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection,” J. Am. Chem. Soc. 128, 10304-10309 (2006).
[CrossRef] [PubMed]

X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127, 4484-4489 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B

C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426-7433 (2003).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279-11285(2005).
[CrossRef]

L. A. Gearheart, H. J. Ploehn, and C. J. Murphy, “Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA,” J. Phys. Chem. B 105, 12609-12615 (2001).
[CrossRef]

Nanotoday

C-C. You, A. Chompoosor, and V. M. Rotello, “The biomacromolecule-nanoparticle interface,” Nanotoday 2, 34-43 (2007).
[CrossRef]

Nat. Biotechnol.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004).
[CrossRef] [PubMed]

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19, 856-860 (2001).
[CrossRef] [PubMed]

Nat. Methods

M. Howarth, D. J-F. Chinnapen, K. Gerrow, P. C. Dorrestein, M. R. Grandy, N. L. Kelleher, A. El-Husseini, and A. Y. Ting, “A monovalent streptavidin with a single femtomolar biotin binding site,” Nat. Methods 3, 267-273 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

G. L. Liu, Y. Yin, S. Kunchakarra, B. Mukherjee, D. Gerion, S. D. Jett, D. G. Bear, J. W. Gray, A. P. Alivisatos, L. P. Lee, and F. F. Chen, “A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting,” Nat. Nanotechnol. 1, 47-52 (2006).
[CrossRef]

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903-143910 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.

P. R. Langer, A. A. Waldrop, and D. C. Ward, “Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes,” Proc. Natl. Acad. Sci. USA 78, 6633-6637(1981).
[CrossRef]

Science

W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Y-W. Cao, R-C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281, 2016-2018(1998).
[CrossRef] [PubMed]

Other

G. C. Schatz and R. P. Van Duyne, Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002), Vol. 1, pp. 759-774.

E. P. Diamandis and T. K. Christopoulous, eds., Immunoassay (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Immobilization strategy via HS–Ag binding and hybridization procedure for a typical sandwich DNA detection.

Fig. 2
Fig. 2

AFM images ( 2 μ m × 2 μ m ) of nanoparticle island (NIS) substrates with different Ag thicknesses from 10 to 200 Å on top of 10 Å Cr, rough analysis of corresponding AFM images is also shown. All substrates were fabricated by PVD with a coating rate of 0.1     Å / s and a vacuum of 10 6 Torr .

Fig. 3
Fig. 3

UV–visible extinction spectra of NIS substrates with different Ag thicknesses; λ max stands for extinction maximum.

Fig. 4
Fig. 4

Statistical study of extinction maximum λ max of NIS substrates with different Ag thicknesses: A,  10 Å ; B,  30 Å ; C,  50 Å ; D,  70 Å ; and E,  90 Å , where σ is the half-width at half-maximum of the Gaussian-fitted curves. F shows the redshifting trend of the average λ max with increasing Ag thickness; error bars indicate the values of σ.

Fig. 5
Fig. 5

UV–visible extinction spectra of NIS samples with different Ag thicknesses and their corresponding SERS spectra of Rh6G obtained from Ag thicknesses of 10, 30, 50, 70, and 90 Å , respectively; the bottom trace shows the typical background spectrum of the blank substrate.

Fig. 6
Fig. 6

A: SERS results of target oligonucleotide detection (concentrations from 1 μM to 1 nM ). The spectra shown were given by the detection OND p3 with Raman label FAM; B: corresponding sigmoidal response curve of vibration mode 1652 cm 1 of FAM, which was normalized by maximum intensity; the bottom trace shows the background spectrum of the substrate coated with the receptor OND.

Fig. 7
Fig. 7

Target OND detection with the aid of Au-NPs-capped detection OND p4 with Raman label FAM. A, SERS spectra of target OND (concentrations from 4 μM to 0.4 fM ), B, normalized sigmoidal response curve of vibration mode 1652 cm 1 of FAM versus the change of target concentrations; the bottom trace shows the background spectrum of the substrate coated with the receptor OND.

Tables (1)

Tables Icon

Table 1 Enhancement Factors of Vibration Mode 1652 cm 1 ( λ vib : 562 nm ) Obtained from Rh6G at Different Ag Layer Thicknesses Versus Their Corresponding Extinction Maxima λ max a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF ( 1652 cm 1 ) = N vol × I surf N surf × I vol .

Metrics