Abstract

We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5×108 (10MHz, 0.08pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
    [CrossRef]
  2. http://www.toptica.com.
  3. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  4. A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
    [CrossRef]
  5. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  6. A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
    [CrossRef]
  7. P. Balling, “Absolute frequency measurement of wavelength standard at 1542: acetylene stabilized DFB laser,” Opt. Express 13, 9196-9201 (2005).
    [CrossRef] [PubMed]
  8. B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
    [CrossRef]
  9. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb5P3/2 state,” Opt. Lett. 21, 1280-1282 (1996).
    [CrossRef] [PubMed]
  10. S. Masuda, A. Seki, and S. Niki, “Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor,” Appl. Opt. 46, 4780-4785 (2007).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

2004 (1)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
[CrossRef]

2003 (2)

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

2000 (1)

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

1999 (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

1996 (1)

1966 (1)

B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
[CrossRef]

Akimoto, Y.

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Balling, P.

Czajkowski, A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Dubé, P.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
[CrossRef]

Guo, R.

Hall, J. L.

Hänsch, T. W.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Harada, S.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Hatano, S.

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Holzwarth, R.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Hong, F.-L.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Ikegami, T.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Inaba, H.

Irisawa, A.

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Jiang, J.

Jungner, P.

Madej, A. A.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Masuda, S.

Matsumoto, H.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Minoshima, K.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Nakagawa, K.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Niki, S.

S. Masuda, A. Seki, and S. Niki, “Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor,” Appl. Opt. 46, 4780-4785 (2007).
[CrossRef] [PubMed]

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Onae, A.

F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324-2326 (2003).
[CrossRef] [PubMed]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Schibli, T. R.

Seki, A.

Sugiyama, K.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Swartz, S.

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Ye, J.

Yong-chol, L.

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Yoshida, M.

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Appl. Opt. (1)

Metrologia (1)

B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
[CrossRef]

Opt. Commun. (2)

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of 13C2H2,” Opt. Commun. 234, 259-268 (2004).
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, “Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser,” Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Proc. SPIE (1)

Y. Akimoto, L. Yong-chol, S. Hatano, A. Irisawa, and S. Niki, “Practical absolute wavelength meter using iodine-stabilized diode laser,” Proc. SPIE 4932, 615-623 (2003).
[CrossRef]

Other (1)

http://www.toptica.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a wavelength meter using a Michelson interferometer.

Fig. 2
Fig. 2

Measurement results of a He–Ne laser using a wavelength meter that employs a 633 nm iodine-stabilized diode laser as a reference light source.

Fig. 3
Fig. 3

Schematic of a Rb-stabilized laser: DFB-LD (distributed-feedback laser diode), LN modulator (lithium niobate optical phase modulator), PPLN (periodically poled lithium niobate), BS (beam splitter), PD (photodiode), DBM (double-balanced mixer), and SG (signal generator).

Fig. 4
Fig. 4

Simulation results of the measurement errors of a wavelength meter under various temperature conditions using Eqs. (3, 4).

Fig. 5
Fig. 5

Photograph of a prototype of a highly accurate wavelength meter.

Fig. 6
Fig. 6

Measurement result of the wavelength of a Rb-stabilized diode laser using a highly accurate wavelength meter with a Rb-stabilized DFB diode laser as a reference wavelength.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f unknown = f ceo + N f rep + f beat ,
L = ( λ s n s ) × N s = ( λ R n R ) × N R .
λ t = λ R × ( N R N s ) × ( n s n R ) ,
( n s 1 ) × 10 8 = 6432.8 + 2949810 146 1 / λ 2 + 25540 41 1 / λ 2 ,
( n s / n t 1 ) × 10 6 = { 0.931 + 0.006 ( 1 / λ 2 3 ) 0.003 ( t 20 ) } ( t 20 ) { 0.359 + 0.002 ( 1 / λ 2 3 ) 0.001 ( t 20 ) } ( p 760 ) + 0.05 ( f 10 ) 0.015 ( k 3 ) ,
k p = λ c λ R ,
k 0 = λ R λ c ,
λ = λ c 1 λ c 2 λ R 1 λ R 2 ( λ R λ R 1 ) × λ c 1 ,

Metrics