Abstract

Bulk laser-induced damage at 1064nm has been investigated in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals with a nanosecond pulsed Nd:YAG laser. Both crystals belong to the same family. Throughout this study, their comparison shows a very similar laser-damage behavior. The evolution of the damage resistance under a high number of shots per site (10,000 shots) reveals a fatigue effect of KTP and RTP crystals. In addition, S-on-1 damage probability curves have been measured in both crystals for all combinations of polarization and propagation direction aligned with the principal axes of the crystals. The results show an influence of the polarization on the laser-induced damage threshold (LIDT), with a significantly higher threshold along the z axis, whereas no effect of the propagation direction has been observed. This LIDT anisotropy is discussed with regard to the crystallographic structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622-633 (1989).
    [CrossRef]
  2. M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
    [CrossRef]
  3. Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
    [CrossRef]
  4. K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).
  5. G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
    [CrossRef]
  6. M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
    [CrossRef]
  7. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandre, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849-13857 (2007).
    [CrossRef]
  8. M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976-4982 (1989).
    [CrossRef]
  9. M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
    [CrossRef]
  10. J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
    [CrossRef]
  11. J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk darkening threshold of flux grown KTP,” Opt. Lett. 16, 1307-1309 (1991).
    [CrossRef]
  12. X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
    [CrossRef]
  13. H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
    [CrossRef]
  14. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser damage measurement: application to multiparameter study,” Appl. Opt. 42, 960-971 (2003).
    [CrossRef]
  15. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
    [CrossRef]
  16. “Determination of laser-induced threshold of optical surfaces--Part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).
  17. “Determination of laser-induced threshold of optical surfaces--Part 1: 1-on-1 test,” ISO 11254-1 (International Organization for Standardization, 2000).
  18. J.-Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005).
    [CrossRef]
  19. T. Olivier, “Contribution à la métrologie de l'indice de réfraction et de l'absorption non-linéaires dans le régime nanoseconde: Amélioration de la méthode de z-scan et simulations numériques,” Ph.D. thesis (Université Paul Cézanne Aix-Marseille III, 2004).
  20. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194-196 (1993).
    [CrossRef]
  21. B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
    [CrossRef]
  22. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
    [CrossRef]
  23. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137-1140 (1991).
    [CrossRef]
  24. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
    [CrossRef]
  25. P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
    [CrossRef]
  26. H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
    [CrossRef]
  27. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
    [CrossRef]
  28. S. Favre, “Génération de deuxième et troisième harmonique avec un laser Nd:YAG en régime pulsé libre,” Ph.D. thesis (Ecole polytechnique fédérale de Lausanne, 2001).
  29. J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
    [CrossRef]
  30. K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
    [CrossRef]
  31. Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
    [CrossRef]

2008 (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

2007 (2)

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandre, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849-13857 (2007).
[CrossRef]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

2006 (1)

M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
[CrossRef]

2005 (3)

J.-Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005).
[CrossRef]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

2004 (1)

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

2003 (2)

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser damage measurement: application to multiparameter study,” Appl. Opt. 42, 960-971 (2003).
[CrossRef]

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

2001 (1)

K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).

2000 (2)

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

1999 (1)

B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
[CrossRef]

1997 (2)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

1995 (2)

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

1994 (1)

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

1993 (2)

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
[CrossRef]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18, 194-196 (1993).
[CrossRef]

1991 (3)

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137-1140 (1991).
[CrossRef]

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk darkening threshold of flux grown KTP,” Opt. Lett. 16, 1307-1309 (1991).
[CrossRef]

1989 (3)

J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622-633 (1989).
[CrossRef]

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976-4982 (1989).
[CrossRef]

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
[CrossRef]

Akhouayri, H.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

Albrecht, H.

Angert, N.

M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
[CrossRef]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Bertussi, B.

Bierlein, J. D.

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Boulanger, B.

B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
[CrossRef]

Carr, C. W.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

Cockroft, N. J.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Commandre, M.

Commandré, M.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

J.-Y. Natoli, B. Bertussi, and M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005).
[CrossRef]

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

DeMange, P.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

Demos, S. G.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

DeSalvo, R.

Ding, Y. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Favre, S.

S. Favre, “Génération de deuxième et troisième harmonique avec un laser Nd:YAG en régime pulsé libre,” Ph.D. thesis (Ecole polytechnique fédérale de Lausanne, 2001).

Fujita, H.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Gallais, L.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser damage measurement: application to multiparameter study,” Appl. Opt. 42, 960-971 (2003).
[CrossRef]

Gier, T. E.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
[CrossRef]

Goellner, S. H.

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Grèzes-Besset, C.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

Hagan, D. J.

Halliburton, L. E.

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Harrison, J. F.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
[CrossRef]

Hildenbrand, A.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandre, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849-13857 (2007).
[CrossRef]

Hirano, S.

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

Hopkins, F. K.

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Hu, X. B.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Jacco, J. C.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

J. C. Jacco, D. R. Rockafellow, and E. A. Teppo, “Bulk darkening threshold of flux grown KTP,” Opt. Lett. 16, 1307-1309 (1991).
[CrossRef]

Jarman, R. H.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
[CrossRef]

Ji, W.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

Jiang, H. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Jiang, Y.

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

Jitsuno, T.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Jolin, L. J.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Kamimura, T.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Kato, K.

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137-1140 (1991).
[CrossRef]

Krol, H.

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Li, H.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

Liu, H.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Loiacono, D. N.

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Maggiore, C. J.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Marnier, G.

B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
[CrossRef]

Miyamoto, A.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Mu, X. D.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Munowitz, M.

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
[CrossRef]

Nakatsuka, M.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Natoli, J.-Y.

Noda, K.

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

Olivier, T.

T. Olivier, “Contribution à la métrologie de l'indice de réfraction et de l'absorption non-linéaires dans le régime nanoseconde: Amélioration de la méthode de z-scan et simulations numériques,” Ph.D. thesis (Université Paul Cézanne Aix-Marseille III, 2004).

Oseledchik, Yu. S.

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Paffett, M. T.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Petrin, R. R.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Phillips, M. L. F.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
[CrossRef]

Pisarevsky, A. I.

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Poncetta, J.-C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Prosvirnin, A. L.

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Quagliano, J. R.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Radousky, H. B.

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

Rockafellow, D. R.

Roelofs, M. G.

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976-4982 (1989).
[CrossRef]

Roth, M.

M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
[CrossRef]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

Rottenberg, J.

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Rousseau, I.

B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
[CrossRef]

Said, A. A.

Sakamoto, W.

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

Sasaki, T.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Scripsick, M. P.

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Sheik-Bahae, M.

Starshenko, V. V.

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Stucky, G. D.

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
[CrossRef]

Svitanko, N. V.

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Teppo, E. A.

Theodore, F.

Trujillo, T. C.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Tseitlin, M.

M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
[CrossRef]

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

Tyminski, J. K.

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

Van Stryland, E. W.

Vanherzeele, H.

Wagner, F. R.

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandre, F. Theodore, and H. Albrecht, “Laser damage resistance of RbTiOPO4: evidence of polarization dependent anisotropy,” Opt. Express 15, 13849-13857 (2007).
[CrossRef]

Wang, J. Y.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Wang, X.

K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).

Wenzel, R.

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

Yogo, T.

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

Yoshida, H.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Yoshida, K.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Yoshimura, M.

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Zhang, H. J.

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

Zhang, K.

K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).

Zhang, X.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

Zhou, F.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. P. Scripsick, D. N. Loiacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux grown KTP,” Appl. Phys. Lett. 66, 3428 (1995).
[CrossRef]

Chem. Mater. (2)

G. D. Stucky, M. L. F. Phillips, and T. E. Gier, “The potassium titanyl phosphate structure field: a model for new nonlinear optical materials,” Chem. Mater. 1, 492-509 (1989).
[CrossRef]

M. Munowitz, R. H. Jarman, and J. F. Harrison, “Theoretical study of the nonlinear optical properties of KTiOPO4: effects of Ti-O-Ti bond angles and oxygen electronegativity,” Chem. Mater. 5, 1257-1267 (1993).
[CrossRef]

Chin. Sci. Bull. (1)

K. Zhang and X. Wang, “Structure sensitive properties of KTP-type crystals,” Chin. Sci. Bull. 46, 2028-2036 (2001).

IEEE J. Quantum Electron. (1)

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137-1140 (1991).
[CrossRef]

J. Appl. Phys. (2)

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976-4982 (1989).
[CrossRef]

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

J. Cryst. Growth (1)

X. B. Hu, J. Y. Wang, H. J. Zhang, H. D. Jiang, H. Liu, X. D. Mu, and Y. J. Ding, “Dependence of photochromic damage on polarization in KTiOPO4 crystals,” J. Cryst. Growth 247, 137-140 (2003).
[CrossRef]

J. Mater. Sci. Lett. (1)

K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69-72 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

B. Boulanger, I. Rousseau, and G. Marnier, “Cubic optical nonlinearity of KTiOPO4,” J. Phys. B 32, 475-488 (1999).
[CrossRef]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

Opt. Commun. (2)

H. Krol, L. Gallais, C. Grèzes-Besset, J.-Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256, 184-189 (2005).
[CrossRef]

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75-81 (1997).
[CrossRef]

Opt. Eng. (1)

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47, 083603 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (2)

M. Roth, M. Tseitlin, and N. Angert, “Composition-dependent electro-optic and nonlinear optical properties of KTP-family crystals,” Opt. Mater. 28, 71-76 (2006).
[CrossRef]

Yu. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237-242 (1994).
[CrossRef]

Phys. Status Solidi B (1)

Y. Jiang, L. E. Halliburton, M. Roth, M. Tseitlin, and N. Angert, “Hyperfine structure associated with the dominant radiation-induced trapped hole center in RbTiOPO4 crystals,” Phys. Status Solidi B 242, 2489-2496 (2005).
[CrossRef]

Proc. SPIE (2)

J. R. Quagliano, R. R. Petrin, T. C. Trujillo, R. Wenzel, L. J. Jolin, M. T. Paffett, C. J. Maggiore, N. J. Cockroft, and J. C. Jacco, “Materials characterization, optical spectroscopy, and laser damage studies of electrochromically and photochromically damaged KTP,” Proc. SPIE 2428, 4-11 (1995).
[CrossRef]

H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, T. Kamimura, M. Yoshimura, T. Sasaki, A. Miyamoto, and K. Yoshida, “Laser-induced damage in nonlinear crystals on irradiation direction and polarization,” Proc. SPIE 3902, 418-422(2000).
[CrossRef]

Rev. Sci. Instrum. (2)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

P. DeMange, C. W. Carr, H. B. Radousky, and S. G. Demos, “System for evaluation of laser-induced damage performance of optical materials for large aperture lasers,” Rev. Sci. Instrum. 75, 3298-3301 (2004).
[CrossRef]

Other (4)

S. Favre, “Génération de deuxième et troisième harmonique avec un laser Nd:YAG en régime pulsé libre,” Ph.D. thesis (Ecole polytechnique fédérale de Lausanne, 2001).

T. Olivier, “Contribution à la métrologie de l'indice de réfraction et de l'absorption non-linéaires dans le régime nanoseconde: Amélioration de la méthode de z-scan et simulations numériques,” Ph.D. thesis (Université Paul Cézanne Aix-Marseille III, 2004).

“Determination of laser-induced threshold of optical surfaces--Part 2: S-on-1 test,” ISO 11254-2 (International Organization for Standardization, 2001).

“Determination of laser-induced threshold of optical surfaces--Part 1: 1-on-1 test,” ISO 11254-1 (International Organization for Standardization, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laser-damage setup. A pulsed Nd : YAG laser at 1064 nm ( 6 ns , 10 Hz ) is focused on the sample by a 150 mm lens. The energy of each shot is recorded by a detector. Damage observation is made by imaging scattered light with a zoom lens and a CCD camera. The blocking filter blocks the laser light and transmits the backscattered halogen lamp light.

Fig. 2
Fig. 2

The ratio r between the peak irradiance for nonlinear propagation and the peak irradiance for linear propagation as a function of the expected peak fluence for linear propagation. (Gaussian beam at 1064 nm with 75 μm 1 / e 2 diameter, 6 ns pulse duration.)

Fig. 3
Fig. 3

Microscope images of laser-induced damage in (a) y-cut RTP at 10 J/cm 2 and (b) y-cut KTP at 18 J/cm 2 . In both cases the observation direction is oriented along the irradiation direction.

Fig. 4
Fig. 4

Fatigue effect in KTP and RTP crystals (y-cut crystals, x-polarized light). Evolution of the LIDT of KTP and RTP versus pulse number. The dashed lines are guides to the eye. The LIDT values have been determined by fitting experimental data as shown in Figs. 5, 7.

Fig. 5
Fig. 5

200-on-1 bulk damage probability curves of KTP crystals for different polarizations and propagation directions along the crystal axes: (a) shows data obtained in y-cut and z-cut KTP for x-polarized light. Part (b) shows data obtained in z-cut KTP for x-polarized and y-polarized light. The fits (gray lines) are based on the Gaussian model developed by Krol et al. [26].

Fig. 6
Fig. 6

Measured crystal transmission as a function of fluence. (The fluence scale has been corrected for self-focusing.) The transmission data with z-polarized light [(a) open squares] contains measurements in y-cut RTP, y-cut KTP, and SHG-cut KTP that all superpose. At fluences of reduced transmission the backreflection is enhanced [(a) triangles] and Raman light is generated at 1096 nm (not shown). (b) No transmission reduction can be observed for polarizations other than z-polarization up to the damage thresholds.

Fig. 7
Fig. 7

200-on-1 bulk damage probability curves. Comparison between KTP and RTP crystals for different polarizations and irradiation directions. (a) x-cut crystals, y-polarized light; (b) y-cut crystals, x-polarized light; (c) z-cut crystals, x-polarized light; and (d) z-cut crystals, y-polarized light. The fits (lines) are based on the Gaussian model developed by Krol et al. [26].

Metrics