Abstract

A spatial heterodyne spectrometer (SHS) is an interferometric device that combines high resolving power and a large input acceptance angle in a compact format suitable for use at small telescope focal planes and spacecraft for observations of faint, angularly extended emission-line sources. The primary limitation of SHS instruments has come from the spatial sampling of their output interference pattern image, which limits their use to a narrow bandpass. We describe the first-light results from a broadband all-reflective SHS that can be mechanically aligned to any heterodyne wavelength from 300 to 700nm. Such an instrument can be extremely useful for the near simultaneous study of the brightness and line shapes of major atomic and molecular diagnostic emissions from extended astrophysical targets such as comets or planetary atmospheres. We discuss the results of this validation program and the potential improvements that could be used to expand and/or improve the broadband spectral response of the instrument.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim Quijano, STIS Instrument Handbook, Version 8.0(Baltimore: STScI, 2007).
  2. W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
    [CrossRef]
  3. D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
    [CrossRef]
  4. K.-X. Sun and R. L. Byer, “All-reflective Michelson, Sagnac, and Fabry--Perot interferometers based on grating beam splitters,” Opt. Lett. 23, 567-569 (1998).
    [CrossRef]
  5. P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17, 1327-1331(1978).
    [CrossRef]
  6. A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A-65A (1991).
    [CrossRef]
  7. R. A. Kruger, L. W. Anderson, and F. L. Roesler, “All-reflection interferometer for use as a Fourier-transform spectrometer,” J. Opt. Soc. Am. 62, 938-945 (1972).
    [CrossRef]
  8. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
    [CrossRef]
  9. P. Connes and G. Michel, “Astronomical Fourier spectrometer,” Appl. Opt. 14, 2067-2084 (1975).
    [CrossRef]
  10. P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
    [CrossRef]
  11. M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
    [CrossRef]
  12. J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
    [CrossRef]
  13. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Engler, and R. R. Conway, “Shimmer: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
    [CrossRef]
  14. E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
    [CrossRef]
  15. S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
    [CrossRef]
  16. W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
    [CrossRef]
  17. S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
    [CrossRef]
  18. J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.
  19. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin, 1991).
  20. S. S. Vogt, HIRES User's Manual (1994).
  21. C. R. Englert and J. M. Harlander, “Flatfielding in spatial heterodyne spectroscopy,” Appl. Opt. 45, 4583-4590(2006).
    [CrossRef]

2006

2005

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

2004

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

2002

2001

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

1998

1992

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

1991

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A-65A (1991).
[CrossRef]

1987

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

1978

1975

1972

A'Hearn, M. F.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Anderson, L. W.

Anderson, M. S.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Andringa, J. M.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Bandfield, J. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Bender, K.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Ben-Jaffel, L.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

Bertaux, J.-L.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Booker, T.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Byer, R. L.

Cardon, J. G.

Carlson, R. W.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Chakrabarti, S.

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

Christensen, P. R.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Clancy, R. T.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Clark, R. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Connes, P.

Conrad, P.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Conrath, B. J.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Conway, R. R.

Cook, T.

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

Corliss, J.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

Corliss, J. B.

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

Cotton, D.

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

Cox, G.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Dason, S.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Dybward, J. P.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Engler, C. R.

Englert, C. R.

Esposito, L. W.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

Feldman, P. D.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Festou, M. C.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Gerstenkorn, S.

Gorelick, N.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Greene, E.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Greenfield, M.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Hamilton, V. E.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Hand, K.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Harlander, J. M.

C. R. Englert and J. M. Harlander, “Flatfielding in spatial heterodyne spectroscopy,” Appl. Opt. 45, 4583-4590(2006).
[CrossRef]

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Engler, and R. R. Conway, “Shimmer: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin, 1991).

Harris, C. J.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Harris, W. M.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

Hartford, W.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Jaehnig, K.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

Jaehnig, K. P.

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

Jakosky, B. M.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Kieffer, H. H.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Kohnert, R. A.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

Kruger, R. A.

Kuzmin, R. O.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Lane, M. D.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Lawrence, G. M.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

Lerner, R. C. M.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Luc, P.

Maliin, M. C.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

McClintock, W. E.

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

Mehall, G. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Mellon, R. T.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Michel, G.

Mierkiewicz, E. J.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

Morris, R. V.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Murray, K.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Neef, T.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

Oliversen, R. J.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

Pearl, J. C.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Quijano, J. Kim

J. Kim Quijano, STIS Instrument Handbook, Version 8.0(Baltimore: STScI, 2007).

Reynolds, R. J.

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

Roesler, F. L.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Engler, and R. R. Conway, “Shimmer: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

R. A. Kruger, L. W. Anderson, and F. L. Roesler, “All-reflection interferometer for use as a Fourier-transform spectrometer,” J. Opt. Soc. Am. 62, 938-945 (1972).
[CrossRef]

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

Roush, T.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Ruff, S. W.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Sanders, W. T.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

Scherrer, J.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Shafer, M.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Siegmund, O. H. W.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Silverman, S.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Slater, D. C.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Smith, M. D.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Soto, A.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Stephan, S. G.

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

Stern, S. A.

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

Sun, K.-X.

Thorne, A. P.

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A-65A (1991).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Titus, T. N.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

Tsapin, A. I.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Vickers, J.

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

Vogt, S. S.

S. S. Vogt, HIRES User's Manual (1994).

Wadsworth, W.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Watchorn, S.

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

Wynne-Jones, I.

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Anal. Chem.

A. P. Thorne, “Fourier transform spectrometry in the ultraviolet,” Anal. Chem. 63, 57A-65A (1991).
[CrossRef]

Appl. Opt.

Astrophys. J.

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992).
[CrossRef]

S. G. Stephan, S. Chakrabarti, J. Vickers, T. Cook, and D. Cotton, “Interplanetary H Lyα observations from a sounding rocket,” Astrophys. J. 559, 491-500 (2001).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

W. M. Harris, F. L. Roesler, L. Ben-Jaffel, E. J. Mierkiewicz, J. Corliss, R. J. Oliversen, and T. Neef, “Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV--vis emission line sources in the solar system,” J. Electron Spectrosc. Relat. Phenom. 143, 973-977 (2005).
[CrossRef]

J. Geophys. Res.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, S. W. Ruff, H. H. Kieffer, T. N. Titus, M. C. Maliin, R. V. Morris, M. D. Lane, R. L. Clark, B. M. Jakosky, R. T. Mellon, J. C. Pearl, B. J. Conrath, M. D. Smith, R. T. Clancy, R. O. Kuzmin, T. Roush, G. L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, and M. Greenfield, “Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results,” J. Geophys. Res. 106, 23823-23871 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. E

A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Lerner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet: design and performance,” J. Phys. E 20, 54-60(1987).
[CrossRef]

Opt. Lett.

Proc. SPIE

W. E. McClintock, G. M. Lawrence, R. A. Kohnert, and L. W. Esposito, “Optical design of the ultraviolet imaging spectrograph for the Cassini mission to Saturn,” Proc. SPIE 1745, 26-38 (1992).
[CrossRef]

D. C. Slater, S. A. Stern, T. Booker, J. Scherrer, M. F. A'Hearn, J.-L. Bertaux, P. D. Feldman, M. C. Festou, and O. H. W. Siegmund, “Radiometric and calibration performance results of the Rosetta UV imaging spectrometer ALICE,” Proc. SPIE 4498, 239-247 (2001).
[CrossRef]

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751-766(2004).
[CrossRef]

S. Watchorn, F. L. Roesler, J. M. Harlander, K. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
[CrossRef]

Rev. Sci. Instrum.

M. S. Anderson, J. M. Andringa, R. W. Carlson, P. Conrad, W. Hartford, M. Shafer, A. Soto, A. I. Tsapin, J. P. Dybward, W. Wadsworth, and K. Hand, “Fourier transform infrared spectroscopy for Mars science,” Rev. Sci. Instrum. 76, 034101 (2005).
[CrossRef]

Other

J. Kim Quijano, STIS Instrument Handbook, Version 8.0(Baltimore: STScI, 2007).

J. B. Corliss, E. J. Mierkiewicz, F. L. Roesler, R. J. Oliversen, and W. M. Harris, “Was a long-lived, high velocity gas jet produced by the comet Tempel 1 deep impact event? Evidence from high spectral resolution [0I] 630 nm interference spectra,” in Proceedings of Asteroids, Comets, and Meteors 2008 (Lunar and Planetary Institute, 2008), p. 1405.

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin, 1991).

S. S. Vogt, HIRES User's Manual (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Beam-split SHS has a configuration very similar to a Michelson design, but with the mirrors replaced by gratings. As shown here, the gratings are tilted to the Littrow condition for a wavenumber σ o . In this case the center points of the two gratings can be adjusted to meet the Michelson zero-path condition for positive interference at the output, while the Littrow condition ensures that the wavefronts of both emerging beams are parallel and so produce uniform illumination at the output (i.e., a fringe frequency of zero). Note that for wavefronts other than σ o , the outgoing beams are no longer parallel and appear to be coming from a pair of separated sources. The result is a series of fringes that can be imaged onto a detector.

Fig. 2
Fig. 2

(a) Sample optical path is shown for a three-mirror Sagnac interferometer. Note that the beams traverse the system in both directions simultaneously, only to recombine at the beam splitter. The reflective SHS in (b) shows one of two optical paths through the interferometer. Note that the right-angle roof mirror translates the beam vertically away from the plane of interference. The exiting beam returns to the same approximate horizontal location on the grating, but exits with a clear separation from the input.

Fig. 3
Fig. 3

(a) In the reflective SHS, the wavefronts at the heterodyne wavelength emerge parallel, while (b) the wavefronts at a different wavelength are tilted relative to each other at the output. Where the path difference between the two beams in (b) is equal to an integer multiple of the wavelength, positive interference occurs. The spacing between fringes is directly related to the cross-tilt angle (γ).

Fig. 4
Fig. 4

(a) The mechanical model of our prototype design shows the placement of the mounts and the rotation stages. (b) The manner by which symmetric rotation of the two mirrors in the reflective SHS can be used to change the heterodyne wavelength. Note that the wider the desired tuning bandpass, the longer the mirrors must be.

Fig. 5
Fig. 5

(a) Full prototype assembly of the TSHS as it was used at the McMath–Pierce solar telescope at the Kitt Peak National Observatory. The tower at the top isolates the FOV to match the SHS Ω and folds the beam toward the instrument (at bottom). On the right are the output optics that filter the bandpass and image the fringe plane onto the CCD. (b) A close-up of the instrument showing the primary optical components and the rotation stages.

Fig. 6
Fig. 6

Series of lamp spectra demonstrate the performance of the TSHS at three points between (a) 365 and (c)  630 nm ; see also Fig. 8 for an additional point at 589 nm. Observation below 365 nm was restricted by attenuation in the 300 mm telephoto lens optics used to magnify the fringe localization plane onto the CCD.

Fig. 7
Fig. 7

(a) Raw image of the fringe pattern created by the 589 / 589.6 nm sodium D-lines from a calibration source shows fringes. (b) Magnification of the cropped interferogram region used for the Fourier transform reveals details of the pattern. Note the two patterns corresponding to the two lines both show different frequencies, but also opposite rotations indicative of a tuning position between the two lines. Wavefront distortion can be seen to reduce fringe contrast in the upper left of the image. (c) Here the power spectrum (flat-field effects have not been removed) shows both emission lines in symmetric spectra above and below the bright central “white light burst.” (d) The extracted spectrum shows the two D-lines, and provides both the wavelength of the heterodyne frequency and the spectral scale.

Fig. 8
Fig. 8

(a) Raw image of the Jupiter interferogram shows both the foreshortening of the heliostat on the McMath–Pierce telescope but also the “barber pole” produced by the fact that all frequencies in the pattern interfere positively at one common point and by the fact that all frequencies have the same vertical fringe frequency from the mirror cross tilt. Note that the density of spectral elements in a continuum spectrum blurs out the contrast for detection of specific fringe frequencies. (b) The power spectrum of the Fourier transform of the interference pattern shows a slight asymmetry in the shape relative to the central heterodyne wavelength. This is due to the shape of the profile overlaid in (c), which has much higher transmission in the red end of the instrument bandpass. (c) In addition to the filter profile (dashed curve) the spectrum reveals several Fraunhofer features that are dominated by the two sodium D-lines. (d) Finally, after division by the outline of the filter/instrument-response envelope, the Jovian continuum is plotted with a resolution-matched solar spectrum overlaid.

Fig. 9
Fig. 9

(a) Interferogram of Venus shows the presence of a barber pole, but the contrast is lower than for the case of Jupiter. The highly foreshortened nature of the heliostat image is clearly shown in the shape of the illumination pattern. (b) The extracted power spectrum shows both the sharp red cutoff (visible as an asymmetry in the shape of the emission profile above and below the central white light burst) and considerable low-frequency scatter. (c) The final spectrum shows a symmetric shape that cuts off to 0% effective throughput at the heterodyne wavelength. The peaks to the red side of the tune appear to be related to the scattered power described above.

Tables (2)

Tables Icon

Table 1 Characteristics Describing the Prototype TSHS as used at the McMath–Pierce Telescope including Input and Output Optics Coupling the Instrument to the McMath–Pierce Telescope and the Andor CCD.

Tables Icon

Table 2 Physical Characteristics of the TSHS Setup for the Observations of Jupiter and Venus During the First-Light Observations a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f x = 2 σ sin ( γ ) 4 ( σ σ o ) tan ( β o ) .
I ( x ) = 0 S σ [ 1 + cos { 8 π ( σ σ o ) x tan ( β o ) } ] d σ ,
z = D / 2 cos 2 ( β o ) ,
I ( x ) = 0 S σ [ 1 + cos { 8 π ( σ σ o ) x tan ( β o ) + 2 π y ϕ σ } ] d σ ,
f x / f y = tan ( η ) = 4 ( σ σ o ) tan ( β o ) / ϕ σ .
R = 4 W σ sin θ ,
s n ( σ ) = S σ t S tot ,

Metrics