Abstract

A thermo-optic two-mode interference (TMI) waveguide structure with a silicon trench and heat- insulating grooves in both sides of the core has been proposed for a variable optical attenuator (VOA) with fast response time. Thermal analysis of the proposed thermo-optic TMI waveguide structure with a silicon oxinitride (SiON) core has been performed by using the implicit finite difference method. The heating power required to achieve the attenuated power of 25.5dB for a VOA with a silicon trench is 460 mW , which is approximately 1.8 times less than that of a VOA without a silicon trench. The response time is estimated as 98μs, which is faster than the response time of the existing VOA.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
    [CrossRef]
  2. M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.
  3. K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
    [CrossRef]
  4. R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.
  5. M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
    [CrossRef]
  6. X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
    [CrossRef]
  7. S. M. Garner and S. Caracci, “Variable optical attenuator for large scale integration,” IEEE Photon. Technol. Lett. 14, 1560-1562 (2002).
    [CrossRef]
  8. F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact higher ring resonator Filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  9. A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in 2006 IFIP International Conference on Wireless and Optical Communication Networks,” (IEEE,2006), (1-5.
    [CrossRef]
  10. Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
    [CrossRef]
  11. B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003).
    [CrossRef]
  12. M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
    [CrossRef]
  13. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structures of silica-based planar light wave circuits for low power thermo-optic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20,993-1000 (2002).
    [CrossRef]
  14. A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).
  15. Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
    [CrossRef]
  16. P. P. Sahu, “Polarization insensitive thermally tunable add/drop multiplexer using cascaded Mach-Zehnder coupler,” Appl. Phys. B 92, 247-252 (2008).
    [CrossRef]
  17. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  18. P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265-272 (2008).

2008 (2)

P. P. Sahu, “Polarization insensitive thermally tunable add/drop multiplexer using cascaded Mach-Zehnder coupler,” Appl. Phys. B 92, 247-252 (2008).
[CrossRef]

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265-272 (2008).

2007 (2)

F. Xia, M. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact higher ring resonator Filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15, 11934-11941 (2007).
[CrossRef] [PubMed]

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

2005 (2)

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

2003 (3)

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003).
[CrossRef]

2002 (2)

2001 (1)

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
[CrossRef]

1992 (1)

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
[CrossRef]

1989 (1)

Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
[CrossRef]

Aisawa, S.

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

Amano, C.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
[CrossRef]

Cappuzzo, M. A.

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

Caracci, S.

S. M. Garner and S. Caracci, “Variable optical attenuator for large scale integration,” IEEE Photon. Technol. Lett. 14, 1560-1562 (2002).
[CrossRef]

Chen, E.

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

Cho, S. H.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Choi, S. S.

Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
[CrossRef]

Chua, S. J.

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003).
[CrossRef]

Chung, Y.

Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
[CrossRef]

Das, A. K.

A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in 2006 IFIP International Conference on Wireless and Optical Communication Networks,” (IEEE,2006), (1-5.
[CrossRef]

Earnshaw, M. P.

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

Ellis, M.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Garner, S. M.

S. M. Garner and S. Caracci, “Variable optical attenuator for large scale integration,” IEEE Photon. Technol. Lett. 14, 1560-1562 (2002).
[CrossRef]

Geisberger, A.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Goh, T.

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structures of silica-based planar light wave circuits for low power thermo-optic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol. 20,993-1000 (2002).
[CrossRef]

Gomez, L.

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Himeno, A.

Hirabayashi, K.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
[CrossRef]

Inoue, Y.

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
[CrossRef]

Ishikawa, S.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Jiang, X.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Joo, J. J.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Kasahara, R.

Katoh, K.

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
[CrossRef]

Kawachi, M.

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
[CrossRef]

Kim, S. H.

Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
[CrossRef]

Koga, M.

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.

Lee, H. J.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Lee, M. H.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Li, B.

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003).
[CrossRef]

Li, X.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Matsui, S.

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Nistorica, C.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Noh, Y. O.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Oh, M. C.

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

Okamoto, S.

M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.

Rooks, M.

Sahu, P. P.

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265-272 (2008).

P. P. Sahu, “Polarization insensitive thermally tunable add/drop multiplexer using cascaded Mach-Zehnder coupler,” Appl. Phys. B 92, 247-252 (2008).
[CrossRef]

A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in 2006 IFIP International Conference on Wireless and Optical Communication Networks,” (IEEE,2006), (1-5.
[CrossRef]

Saini, R.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Sekaric, L.

Skidmore, G.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Sugita, A.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Takigawa, Y.

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

Tsui, K.

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

Vlasov, Y. A.

Wada, M.

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
[CrossRef]

Wang, M.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Watanabe, A.

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

Watanbe, A.

M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.

Wong-Foy, A.

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

Wu, Y.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Xia, F.

Yanagisawa, M.

Yang, J.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Yasu, M.

Yi, J. C.

Y. Chung, J. C. Yi, S. H. Kim, and S. S. Choi, “Analysis of tunable multichannel two-mode interference wavelength division multiplexer/demultiplexer,” J. Lightwave Technol. 7, 766-777(1989).
[CrossRef]

Zhou, H.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Appl. Phys. B (1)

P. P. Sahu, “Polarization insensitive thermally tunable add/drop multiplexer using cascaded Mach-Zehnder coupler,” Appl. Phys. B 92, 247-252 (2008).
[CrossRef]

IEE Electron. Lett. (1)

M. P. Earnshaw, M. A. Cappuzzo, E. Chen, L. Gomez, and A. Wong-Foy, “Ultra-low power thermo-optic silica on silicon waveguide membrane switch,” IEE Electron. Lett. 43, 393-394 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

S. Aisawa, A. Watanabe, T. Goh, Y. Takigawa, and M. Koga, “Advances in optical path crossconnect systems using planar lightwave circuit switching technologies,” IEEE Commun. Mag. 41(), 54-57 (2003).
[CrossRef]

IEEE J. lightwave Technol. (1)

B. Li and S. J. Chua, “Two mode interference photonic waveguide switch,” IEEE J. lightwave Technol. 21, 1685-1690(2003).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Y. Inoue, K. Katoh, and M. Kawachi, “Polarization sensitivity of a silica waveguide thermo-optic phase shifter for planar light wave circuits,” IEEE Photon. Technol. Lett. 4, 36-38(1992).
[CrossRef]

K. Hirabayashi, M. Wada, and C. Amano, “Liquid crystal variable optical attenuatorsintegrated on planar lightwave circuits,” IEEE Photon. Technol. Lett. 13, 609-611(2001).
[CrossRef]

M. C. Oh, S. H. Cho, Y. O. Noh, H. J. Lee, J. J. Joo, and M. H. Lee, “Variable optical attenuator based on large-core single mode polymer waveguide,” IEEE Photon. Technol. Lett. 17, 1890-1892 (2005).
[CrossRef]

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

S. M. Garner and S. Caracci, “Variable optical attenuator for large scale integration,” IEEE Photon. Technol. Lett. 14, 1560-1562 (2002).
[CrossRef]

Indian J. Phys. (1)

P. P. Sahu, “Silicon oxinitride: a material for compact waveguide device,” Indian J. Phys. 82, 265-272 (2008).

J. Lightwave Technol. (2)

J. Opt. (1)

A. K. Das and P. P. Sahu, “Minimization of heating power for thermo-optic waveguide type devices,” J. Opt. 32, 151-167(2003).

Opt. Express (1)

Other (4)

A. K. Das and P. P. Sahu, “Compact integrated optical devices using high index contrast waveguides,” in 2006 IFIP International Conference on Wireless and Optical Communication Networks,” (IEEE,2006), (1-5.
[CrossRef]

R. Saini, A. Geisberger, K. Tsui, C. Nistorica, M. Ellis, and G. Skidmore, “Assembled MEMS VOA,” in 2003 IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), pp 139-140.

M. Koga, A. Watanbe, and S. Okamoto, “8×16 delivery and coupling type optical switches for 320 gbit/s throughput optical path cross-connect system,” in Optical Fiber Communication, Vol. 2 of OSA Technical Digest Series (Optical Society of America, 1996), pp. 259-261.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the thermo-optic two-mode interference coupler composed of a thin film heater and groove: (a) top view, (b) cross sectional view with nodal structure along line A A .

Fig. 2
Fig. 2

T versus x for structure-3 and for different values of groove depth ( H G ) [ W H = 6 μm , W c = 15 μm , W G = 9 μm , P = 144 mW / mm , TMI core size = 11.5 μ m × 5.5 μ m , W oc = 2 μm , and Δ n ( 0 ) = 0.4 % ].

Fig. 3
Fig. 3

Δ T ( P ) versus P for W G = 6 μm , 8 μm , and 12 μm with W H = 6 μm , W c = 15 μm , H G = 12 μm , TMI core size = 11.5 μ m × 5.5 μ m , W oc = 2 μm , Δ n ( 0 ) = 0.4 % .

Fig. 4
Fig. 4

Heating power versus H T to obtain Δ T ( P ) of 25 ° C for W T = 9 μm , 12 μm and 14 μm with H G = 12 μm W H = 6 μm , W c = 15 μm , H G = 12 μm , TMI core size = 11.5 μ m × 5.5 μ m and W oc = 2 μm , Δ n ( 0 ) = 0.4 % .

Fig. 5
Fig. 5

Output power versus heating power for the TE and TM polarization of the thermo-optic TMI-based VOA with a silicon trench ( H T = 8 μm , W T = 12 μm ) and without a silicon trench for H G = 12 μm , W H = 6 μm , W c = 15 μm , W G = 12 μm , TMI core size = 11.5 μ m × 5.5 μ m , and W oc = 2 μm .

Tables (1)

Tables Icon

Table 1 Parameters Used for Determination of the Temperature Profile of the Structures

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( P ) = { β 00 ( n cl + Δ n ( P ) ) β 01 ( n cl + Δ n ( P ) ) } L c ,
L c = π Δ β ,
Δ n ( P ) = Δ n ( 0 ) + d n d T Δ T ( P ) ,
Δ n ( P ) = Δ n ( 0 ) + d n d T Δ T ( P ) + d ( n TM n TE ) d T Δ T ( P ) ,
d ( n TM n TE ) d T = ( n TM n TE ) S · S V V T .
P 3 P 1 = sin 2 [ Δ ϕ ( P ) 2 ] e 2 α T L T ,
L T H I ( 4 R H I ) .
a i , i T i p + 1 + Σ a i , j T j p + 1 = b i ,
t = p · Δ t .

Metrics