Abstract

We report results from field experiments that have compared laser propagation at 1.565μm and 3.603μm in a variety of atmospheric conditions in a low-altitude maritime environment in order to quantify the relative effects of turbulence under realistic conditions. Intensity scintillation and normalized focused spot sizes were found to be significantly less affected by turbulence at the longer wavelength, in general agreement with theoretical predictions. Also, the longer wavelength beam was noticeably less degraded by aberrations in the transceiver optical components. These advantages should be considered when evaluating the wavelength trade-offs in laser communication systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Searles, G. A. Hart, J. A. Dowling, and S. T. Hanley, “Laser beam propagation in turbulent conditions,” Appl. Opt. 30, 401-406 (1991).
    [CrossRef] [PubMed]
  2. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 1998).
  3. L. C. Andrews and R. L. Phillips, Laser Beam Scintillation with Applications (SPIE, 2001) pp. 131-134.
  4. A. Consortini, F. Cochetti, J. H. Churnside, and R. J. Hill, “Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation,” J. Opt. Soc. Am. A 10, 2354-2362 (1993).
    [CrossRef]
  5. R. G. Frehlich and M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325-5352 (1991).
    [CrossRef] [PubMed]
  6. P. J. Winzer and W. R. Leeb, “Fiber coupling efficiency for random light and its application to lidar,” Opt. Lett. 23, 986-988 (1998).
    [CrossRef]
  7. F. Hanson and E. Schimitschek, “Relative ladar performance in littoral environments: the case for mid-IR coherent laser radar,” Proc. IRIS Active Syst. 1, 59-76 (1999).
  8. F. Hanson, “Coherent laser radar performance in littoral environments: a statistical analysis based on weather observations,” Opt. Eng. 39, 3044-3052 (2000).
    [CrossRef]
  9. A. K. Majumdar and J. C. Ricklin, eds., Free-Space Laser Communications (Springer, 2008).
    [CrossRef]
  10. M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
    [CrossRef]
  11. M. Arbore and T. McHugh, “0.5 Watt, single-frequency, 1510-1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2000), Vol. 39, pp. 520-521.
  12. J. H. Marquardt, R. W. Mackes, and D. Smith, “Single-mode, tunable output from a midwave-infrared-seeded optical parametric oscillator system,” Appl. Opt. 41, 1163-1168(2002).
    [CrossRef] [PubMed]
  13. F. Hanson, P. Poirier, and M. A. Arbore, “Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar,” Opt. Lett. 26, 1794-1796 (2001).
    [CrossRef]
  14. H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
    [CrossRef]
  15. Spectralon is a pressed polytetrafluoroethylene (PTFE) reflectance material manufactured by Labsphere, Inc.
  16. H. T. Yura and S. G. Hanson, “Second-order statistics for wave propagation through complex optical systems,” J. Opt. Soc. Am. A 6, 564-575 (1989).
    [CrossRef]
  17. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966).
    [CrossRef]
  18. See equation 10-69 in Ref. .
  19. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
    [CrossRef]
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), p. 522.
  21. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794-1802 (2002).
    [CrossRef]
  22. L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36, 698-708(1997).
    [CrossRef] [PubMed]
  23. See equation 6-81 in Ref. .

2007 (1)

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

2002 (2)

2001 (1)

2000 (1)

F. Hanson, “Coherent laser radar performance in littoral environments: a statistical analysis based on weather observations,” Opt. Eng. 39, 3044-3052 (2000).
[CrossRef]

1999 (1)

F. Hanson and E. Schimitschek, “Relative ladar performance in littoral environments: the case for mid-IR coherent laser radar,” Proc. IRIS Active Syst. 1, 59-76 (1999).

1998 (1)

1997 (1)

1995 (1)

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

1993 (2)

A. Consortini, F. Cochetti, J. H. Churnside, and R. J. Hill, “Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation,” J. Opt. Soc. Am. A 10, 2354-2362 (1993).
[CrossRef]

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

1991 (2)

1989 (1)

1966 (1)

Anderson, G. P.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36, 698-708(1997).
[CrossRef] [PubMed]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 1998).

L. C. Andrews and R. L. Phillips, Laser Beam Scintillation with Applications (SPIE, 2001) pp. 131-134.

Arbore, M.

M. Arbore and T. McHugh, “0.5 Watt, single-frequency, 1510-1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2000), Vol. 39, pp. 520-521.

Arbore, M. A.

Bai, Y.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), p. 522.

Chetwynd, J. H.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Churnside, J. H.

Cochetti, F.

Consortini, A.

Darvish, S. R.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Davidson, F. M.

Dowling, J. A.

Evans, A.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Frehlich, R. G.

Fried, D. L.

Hanley, S. T.

Hanson, F.

F. Hanson, P. Poirier, and M. A. Arbore, “Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar,” Opt. Lett. 26, 1794-1796 (2001).
[CrossRef]

F. Hanson, “Coherent laser radar performance in littoral environments: a statistical analysis based on weather observations,” Opt. Eng. 39, 3044-3052 (2000).
[CrossRef]

F. Hanson and E. Schimitschek, “Relative ladar performance in littoral environments: the case for mid-IR coherent laser radar,” Proc. IRIS Active Syst. 1, 59-76 (1999).

Hanson, S. G.

Hart, G. A.

Hill, R. J.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 1998).

Kavaya, M. J.

Leeb, W. R.

Mackes, R. W.

Marquardt, J. H.

McHugh, T.

M. Arbore and T. McHugh, “0.5 Watt, single-frequency, 1510-1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2000), Vol. 39, pp. 520-521.

Mi, K.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Miller, S.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Miller, W. B.

Moncet, J. L.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Nguyen, J.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and W. B. Miller, “Mutual coherence function for a double-passage retroreflected optical wave in atmospheric turbulence,” Appl. Opt. 36, 698-708(1997).
[CrossRef] [PubMed]

L. C. Andrews and R. L. Phillips, Laser Beam Scintillation with Applications (SPIE, 2001) pp. 131-134.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 1998).

Poirier, P.

Razeghi, M.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Ricklin, J. C.

Schimitschek, E.

F. Hanson and E. Schimitschek, “Relative ladar performance in littoral environments: the case for mid-IR coherent laser radar,” Proc. IRIS Active Syst. 1, 59-76 (1999).

Searles, S. K.

Siegman, A. E.

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

Slivken, S.

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

Smith, D.

Snell, H. E.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Townsend, S. W.

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

Wang, J. G.

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Winzer, P. J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), p. 522.

Yura, H. T.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212-1217 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Eng. (1)

F. Hanson, “Coherent laser radar performance in littoral environments: a statistical analysis based on weather observations,” Opt. Eng. 39, 3044-3052 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. IRIS Active Syst. (1)

F. Hanson and E. Schimitschek, “Relative ladar performance in littoral environments: the case for mid-IR coherent laser radar,” Proc. IRIS Active Syst. 1, 59-76 (1999).

Proc. SPIE (2)

M. Razeghi, A. Evans, J. Nguyen, Y. Bai, S. Slivken, S. R. Darvish, and K. Mi, “High-power mid- and far-wavelength infrared lasers for free space communication,” Proc. SPIE 6593, 65931V (2007).
[CrossRef]

H. E. Snell, J. L. Moncet, G. P. Anderson, J. H. Chetwynd, S. Miller, and J. G. Wang, “FASCODE for the environment (FASE),” Proc. SPIE 2471, 88-95 (1995).
[CrossRef]

Other (8)

Spectralon is a pressed polytetrafluoroethylene (PTFE) reflectance material manufactured by Labsphere, Inc.

See equation 10-69 in Ref. .

M. Arbore and T. McHugh, “0.5 Watt, single-frequency, 1510-1630 nm, pump- and signal-resonant optical parametric oscillator,” in Conference on Lasers and Electro-Optics (OSA, 2000), Vol. 39, pp. 520-521.

A. K. Majumdar and J. C. Ricklin, eds., Free-Space Laser Communications (Springer, 2008).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Propagation through Random Media (SPIE, 1998).

L. C. Andrews and R. L. Phillips, Laser Beam Scintillation with Applications (SPIE, 2001) pp. 131-134.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), p. 522.

See equation 6-81 in Ref. .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transmission calculated with MODTRAN at 1 cm 1 resolution for a low-altitude horizontal 10 km path for the midlatitude summer atmosphere model with rural aerosol extinction (left scale). The relative wavelength dependence of the Rytov variance σ 1 2 λ 7 / 6 and the transverse coherence length ρ λ 6 / 5 expected in weak turbulence are shown with a common scale.

Fig. 2
Fig. 2

Atmospheric transmission spectrum in the SWIR (bottom) and MWIR (top) calculated with FASE for a 2.8 km path for a midlatitude summer atmosphere and marine aerosol model ( 67 km meteorological range). The wavelengths of the SWIR and MWIR sources lie in transmission windows as indicated by the arrows.

Fig. 3
Fig. 3

The optical layout for the two-way propagation tests using a common retroreflector for both the SWIR (top, blue) and the MWIR (bottom, red). The transmitter portion was functionally the same as used in the first experiment. The received beam paths are shown as dashed lines.

Fig. 4
Fig. 4

Scintillation data measured for the SWIR (circles) and the MWIR (squares) for the 1.26 km path over land during three days of measurements. The normalized intensity variance was calculated for 2 min of data.

Fig. 5
Fig. 5

Typical images of the SWIR and MWIR focused beams, averaged over 10 s, in low turbulence (top) and moderate turbulence (bottom). The calculated diffraction-limited spot is shown as a circle with radius ω 0 , and the normalized spot sizes based on a Gaussian fit are given.

Fig. 6
Fig. 6

Normalized image spot sizes ( ω / ω 0 ) averaged over 10 s during 5 days of measurements for the SWIR (circles) and the MWIR (squares).

Fig. 7
Fig. 7

C n 2 calculated for the SWIR (circles) and the MWIR (squares) from spot size data in Fig. 6 using Eqs. (3, 4).

Fig. 8
Fig. 8

Standard deviation over 10 s of image-plane centroid wander, normalized to the diffraction-limited spot size ( σ C / ω 0 ), for the SWIR (circles) and the MWIR (squares).

Tables (2)

Tables Icon

Table 1 Beam Parameters for Propagation Over the 2 × 1.41 km Round-Trip Path

Tables Icon

Table 2 Summary of Propagation Tests Across the San Diego Bay Channel in the Fall of 2007

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = | A E s ( r ) E 0 ( r ) d r | 2 ,
SR = 16 π 0 1 u [ cos 1 u u ( 1 u 2 ) 1 / 2 ] exp [ 3.44 ( D u / r 0 ) 5 / 3 ] d u ,
r 0 = ( 0.16 C n 2 k 2 L ) 3 / 5
ω / ω 0 = [ 1 + ( D / r 0 ) 5 / 3 ] 3 / 5 ,
W 2 ( z ) = W 0 2 + ( M 2 λ π W 0 ) 2 ( z z 0 ) 2 .
SR opt 1 k 2 Δ Φ 2 ,
A eff = ( I ( x , y ) d x d y ) 2 / I 2 ( x , y ) d x d y .

Metrics