Abstract

We demonstrate a concentration scheme based on a reversed tracing concept utilizing a conventional sidelit backlighting configuration. The optical arrangement consists of a groove sheet and a wedge plate without any coating or surface treatment. The proposed layout simultaneously exhibits two main features: coupling the collimated solar radiance into a wedge plate and guiding the flux to the exit plane of the wedge plate for use in direct daylight. The measurement revealed an optical efficiency of 52% in conjunction with an inverse aspect ratio of 9.51. In addition to the two-dimensional sidelit scheme, the proposed structure can also be rotationally convolved and extended to a three-dimensional solar concentrator with a high concentration ratio, which will certainly have an impact on solar energy and other optical functions because of its simplicity and versatility.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Heschong and J. McHugh, “Skylights: calculating illumination levels and energy impacts,” J. Illum. Eng. Soc. 29, 90-100(2000).
  2. L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).
  3. A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
    [CrossRef]
  4. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
    [CrossRef]
  5. A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
    [CrossRef]
  6. Himawari Solar Lighting System, http://www.himawari-net.co.jp.
  7. SoLux Daylighting System, http://www.bomin-solar.de.
  8. R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617-2619 (2005).
    [CrossRef] [PubMed]
  9. C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
    [CrossRef]
  10. K. Käläntär, “Modified functional light-guide plate for backlighting transmissive LCDs,” J. Soc. Inf. Disp. 15, 641-645(2003).
    [CrossRef]
  11. Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
    [CrossRef]
  12. L. G. Rainhart and W. P. Schimmel, “Effect of outdoor aging on acrylic sheet,” Sol. Energy Mater. 17, 259-264 (1975).
    [CrossRef]
  13. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, 2001).
  14. D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

2008

A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
[CrossRef]

C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
[CrossRef]

2006

Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

2005

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617-2619 (2005).
[CrossRef] [PubMed]

2003

K. Käläntär, “Modified functional light-guide plate for backlighting transmissive LCDs,” J. Soc. Inf. Disp. 15, 641-645(2003).
[CrossRef]

2002

L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).

2000

L. Heschong and J. McHugh, “Skylights: calculating illumination levels and energy impacts,” J. Illum. Eng. Soc. 29, 90-100(2000).

1975

L. G. Rainhart and W. P. Schimmel, “Effect of outdoor aging on acrylic sheet,” Sol. Energy Mater. 17, 259-264 (1975).
[CrossRef]

Cheng, Y. K.

Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Chern, J. L.

Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Chung, S. N.

Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Doulos, L.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Feuermann, D.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).

Fontoynont, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Gordon, J. M.

R. Winston and J. M. Gordon, “Planar concentrators near the étendue limit,” Opt. Lett. 30, 2617-2619 (2005).
[CrossRef] [PubMed]

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).

Heschong, L.

L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).

L. Heschong and J. McHugh, “Skylights: calculating illumination levels and energy impacts,” J. Illum. Eng. Soc. 29, 90-100(2000).

Huleihil, M.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).

Jacobs, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Käläntär, K.

K. Käläntär, “Modified functional light-guide plate for backlighting transmissive LCDs,” J. Soc. Inf. Disp. 15, 641-645(2003).
[CrossRef]

Kim, J.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

Leutz, R.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, 2001).

Lu, Y. H.

C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
[CrossRef]

Maamari, F.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

McHugh, J.

L. Heschong and J. McHugh, “Skylights: calculating illumination levels and energy impacts,” J. Illum. Eng. Soc. 29, 90-100(2000).

Mihalakakou, G.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Mossman, M.

A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
[CrossRef]

Okura, S.

L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).

Park, K. M.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

Pohl, W.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Rainhart, L. G.

L. G. Rainhart and W. P. Schimmel, “Effect of outdoor aging on acrylic sheet,” Sol. Energy Mater. 17, 259-264 (1975).
[CrossRef]

Rhee, J. G.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

Rosemann, A.

A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
[CrossRef]

Ryu, K.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

Santamouris, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Schimmel, W. P.

L. G. Rainhart and W. P. Schimmel, “Effect of outdoor aging on acrylic sheet,” Sol. Energy Mater. 17, 259-264 (1975).
[CrossRef]

Solomon, J.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Suzuki, A.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, 2001).

Tien, C. H.

C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
[CrossRef]

Tsangrassoulis, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Whitehead, L.

A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
[CrossRef]

Wilson, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Winston, R.

Wright, R. L.

L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).

Yao, Y. J.

C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
[CrossRef]

Zimmerman, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

J. Disp. Technol.

C. H. Tien, Y. H. Lu, and Y. J. Yao, “Tandem light-guides with micro-line-prism arrays for field-sequential-color scanning backlight module,” J. Disp. Technol. 4, 147-152 (2008)
[CrossRef]

J. Illum. Eng. Soc.

L. Heschong and J. McHugh, “Skylights: calculating illumination levels and energy impacts,” J. Illum. Eng. Soc. 29, 90-100(2000).

L. Heschong, R. L. Wright, and S. Okura, “Daylighting impacts on human performance in school,” J. Illum. Eng. Soc. 31, 101-114 (2002).

J. Soc. Inf. Disp.

K. Käläntär, “Modified functional light-guide plate for backlighting transmissive LCDs,” J. Soc. Inf. Disp. 15, 641-645(2003).
[CrossRef]

Y. K. Cheng, S. N. Chung, and J. L. Chern, “Analysis and reduction of dark zone in ultra-thin wedge-plate displays,” J. Soc. Inf. Disp. 14, 813-818 (2006).
[CrossRef]

Opt. Lett.

Sol. Energy Mater.

D. Feuermann, J. M. Gordon, and M. Huleihil, “Solar filigber-optic mini-dish concentrators: filigrst experimental results and filigeld experience,” Sol. Energy Mater. 72, 459-472(2002).

L. G. Rainhart and W. P. Schimmel, “Effect of outdoor aging on acrylic sheet,” Sol. Energy Mater. 17, 259-264 (1975).
[CrossRef]

A. Rosemann, M. Mossman, and L. Whitehead, “Development of a cost-effective solar illumination system to bring natural light into the building core,” Sol. Energy Mater. 82, 302-310 (2008).
[CrossRef]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy Mater. 80, 1580-1587 (2006).
[CrossRef]

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy Mater. 79, 56-64 (2005).
[CrossRef]

Other

Himawari Solar Lighting System, http://www.himawari-net.co.jp.

SoLux Daylighting System, http://www.bomin-solar.de.

R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, 2001).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conceptual illustration of a daylight system. The solar radiance is concentrated by the concentration optics and channeled into the relay component to room luminaries.

Fig. 2
Fig. 2

Illustration of the BRCO: θ 1 , incident angle; θ o , angle of refraction; θ v , vertex angle of the wedge plate; θ e , exit angle.

Fig. 3
Fig. 3

Schematic diagram of ray propagation with a virtually folded wedge plate with nonzero entrance height under the Cartesian coordinate: L, length of the wedge plate; X, incident position; D, thickness of the wedge plate; h, exit height; O, original point; x, the x axis; y, the y axis.

Fig. 4
Fig. 4

Two relative efficiencies ( Er 1 = E re / E cl and Er 2 = E co / E cl ) under different wedge plate angle θ v and reflection number M. There is an intersected reflection number M with its corresponding critical position X [can be derived from Eqs. (1, 2)] that determines the threshold for E co / E cl < 1 and E co / E cl > 1 as X < X and X > X .

Fig. 5
Fig. 5

Three possible routes subject the exit condition (deviation angle θ d ) to the geometric layout (prism angle θ p ): (a) Case I, a sharp operating zone with large tip loss; (b) Case II, without any operating zone; (c) Case III, the operating zone of a single prism; (d) considering the adjacent prism in Case III, the blocking loss-free condition (dotted line) deviates from the operating zone.

Fig. 6
Fig. 6

Designed groove set and the schematic route of ray propagation; m, front normal of sheet 2; q 1 , ray vector.

Fig. 7
Fig. 7

Two different modulation manners provided to deflect the ray angle to θ 1 : (a) adjusting mechanism depends only on prism angle θ p and (b) fixing prism angle θ p at 60 ° to modulate groove angle θ p .

Fig. 8
Fig. 8

Efficiency simulated under the extended angular radius Δ θ and different wedge plate angle θ v . The dashed curve indicates overdesign, i.e., the groove set was designed for the vertex angle θ v of 5 ° whereas the actual θ v changed from the design value of 5 ° to 6 ° .

Fig. 9
Fig. 9

Prototype of ultracompact daylighting concentration optics: (a) the 2-D BRCO scheme, (b) TIR prism (sheet 1) with θ p of 60 ° , (c) modulated groove (sheet 2) with θ p of 27.75 ° , (d) wedge plate with θ v of 6 ° .

Fig. 10
Fig. 10

Experimental setup and measurements: (a)  radiation from the solar simulator was coupled, redirected, and guided to the exit plane of the BRCO prototype and the light scattered from the groove set was due to the surface roughness and imperfect groove tips; (b) a rounded tip of sheet 1 with a radius of approximately 25 μm ; (c) a rounded tip of sheet 2 with a radius of approximately 60 μm .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

M ceiling [ 90 ° θ e θ o 2 θ v ] ,
θ e = sin 1 ( X cos θ o L ) .
h = X cos θ o / sin θ e L cot θ e + D ,
E re E cl = 1 + T re 12 ( T re 21 R re m 1 T re 12 1 ) T cl 12 ,
E co E cl = T co 12 ( R co m 2 ) M T cl 12 .
R metal = 1 2 ( | r p | 2 + | r s | 2 ) ,
r p = cos θ in n metal 2 sin 2 θ in cos θ in + n metal 2 sin 2 θ in ,
r s = n metal 2 cos θ in n metal 2 sin 2 θ in n metal 2 cos θ in + n metal 2 sin 2 θ in .
θ p = 1 2 ( 90 + sin 1 ( 1 n P M M A cos θ p ) ) .
θ p = tan 1 ( n 1 sin θ d n 2 sin J n 1 cos θ d n 2 cos J ) ,
J = sin 1 ( n 1 n 2 sin θ 1 ) .

Metrics