Abstract

We have successfully grown a new nonlinear optical crystal, RbBe2BO3F2 (RBBF), which belongs to the group of borate-based nonlinear optical crystals. Its refractive indices in the visible spectral region and type I phase-matching angles from the deep ultraviolet to the near infrared have been determined. Based on the measured refractive indices and phase-matching angles, the Sellmeier equations of RBBF have also been derived.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum frequency mixing in lithium borate,” Opt. Lett. 19, 1538-1540 (1994).
    [CrossRef] [PubMed]
  2. V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
    [CrossRef]
  3. V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
    [CrossRef]
  4. S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.
  5. T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
    [CrossRef]
  6. C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
    [CrossRef]
  7. C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).
  8. C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, T1) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
    [CrossRef]
  9. C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
    [CrossRef]
  10. C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
    [CrossRef]

2008 (2)

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, T1) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

2003 (1)

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
[CrossRef]

2001 (1)

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

1998 (2)

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
[CrossRef]

1996 (1)

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

1994 (1)

Chen, C.

S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.

Chen, C. T.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Deng, D. Q.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Fu, P.

S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.

Kanai, T.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Kittelmann, O.

Kolis, J. W.

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, T1) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

Liu, Y. G.

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

Luo, S. Y.

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Lv, J. H.

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

McMillen, C. D.

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, T1) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

Mori, Y.

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
[CrossRef]

Noack, F.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
[CrossRef]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum frequency mixing in lithium borate,” Opt. Lett. 19, 1538-1540 (1994).
[CrossRef] [PubMed]

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
[CrossRef]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum frequency mixing in lithium borate,” Opt. Lett. 19, 1538-1540 (1994).
[CrossRef] [PubMed]

Ringling, J.

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
[CrossRef]

Sasaki, T.

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
[CrossRef]

Seifert, F.

Sugawara, T.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

Tang, D. Y.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Uda, S.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

Wang, G. L.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Wang, J. Y.

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

Wang, X. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Watanabe, S.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Wen, X. H.

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Wong, G. K. L.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Wu, B. C.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Wu, H. X.

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Wu, S.

S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.

Wu, Y.

S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.

Xu, Z. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Ye, N.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Yoshimura, M.

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
[CrossRef]

Zhang, C. Q.

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

Zhang, J.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Zhu, Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye, and D. Y. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Chin. Phys. Lett. (1)

C. T. Chen, J. H. Lv, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett. 18, 1081(2001).
[CrossRef]

Electron Lett. (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8.4H2O,” Electron Lett. 34, 1748-1750 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, and Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

J. Appl. Phys. (1)

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887-5892 (1998).
[CrossRef]

J. Cryst. Growth (1)

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2 (A=K, Rb, Cs, T1) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

C. T. Chen, S. Y. Luo, X. Y. Wang, X. H. Wen, H. X. Wu, and G. L. Wang, “A novel deep UV nonlinear optical crystal: RbBe2BO3F2,” J. Opt. Soc. Am. B (to be published).

Opt. Lett. (1)

Opt. Mater. (1)

T. Sasaki, Y. Mori, and M. Yoshimura, “Progress in the growth of a CsLiB6O10 crystal and its application to ultraviolet light generation,” Opt. Mater. 23, 343-351 (2003).
[CrossRef]

Other (1)

S. Wu, Y. Wu, P. Fu, and C. Chen, “All solid-state 193 nm source with 5 mJ pulse energy,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest Series (Optical Society of America, 2003), paper CWG7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical transmission spectrum of RBBF crystal in the deep UV and UV spectral regions.

Fig. 2
Fig. 2

Schematic of the right angle prism of RBBF (for measuring the refractive indices of RBBF).

Fig. 3
Fig. 3

Photograph of the sandwiched prism fabricated from a right angle RBBF prism and two glass prisms (for measuring the refractive indices of RBBF).

Fig. 4
Fig. 4

Experimental setup for type I phase- matching angle measurement of RBBF using an OPA.

Fig. 5
Fig. 5

Experimental setup for type I phase-matching angle measurement of RBBF using a femtosecond Ti:sapphire laser.

Fig. 6
Fig. 6

Schematic of RBBF-PCD.

Fig. 7
Fig. 7

Experimental setup for type I phase-matching angle measurement using an RBBF-PCD and the SHG from a femtosecond Ti:sapphire laser.

Fig. 8
Fig. 8

Dispersion curves of the refractive indices, calculated from the Sellmeier equations. The triangles are experimental data.

Fig. 9
Fig. 9

Phase-matching angle versus fundamental wavelength for type I SHG with RBBF. Solid line: calculated from Sellmeier equations. Circles: experimental data.

Fig. 10
Fig. 10

type I SHG phase-matching angle versus fundamental wavelength for RBBF in the deep UV spectral region. Solid line: calculated from Sellmeier equations. Circles: experimental data.

Tables (3)

Tables Icon

Table 1 Measured and Calculated Refractive Indices of RBBF

Tables Icon

Table 2 Phase-Matching Angles for Type I SHG with RBBF a

Tables Icon

Table 3 Phase-Matching Angles for type I Sum-Frequency Mixing ( o + o e ) with RBBF a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 1 + 1.18675 λ 2 λ 2 0.00750 0.00910 λ 2 , n e 2 = 1 + 0.97530 λ 2 λ 2 0.00665 0.00145 λ 2 ( μm ) .

Metrics