Abstract

We provide detailed description and characterization of specifics of the imprinting technique for fabrication of large-area and high-efficiency liquid crystal polymer polarization gratings. We show that the quality of polarization gratings imprinted with linear polarized light is as high as that of gratings obtained in the holographic process, while exhibiting twice larger diffraction angle. The cycloidal polarization pattern used for imprinting is obtained from a master polarization grating, and the importance of fine tuning of its peak diffraction wavelength to the wavelength of imprinting radiation is emphasized. Tuning of the peak diffraction wavelength of imprinted polarization gratings from UV to near IR was realized with the aid of multilayer structures. Since the imprinting process does not involve a holographic setup, it is insensitive to ambient conditions and vibrations and provides an opportunity for large scale production of polarization gratings.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
    [CrossRef]
  2. G. Cincotti, “Polarization gratings: Design and applications,” IEEE J. Quantum Electron. 39, 1645-1652 (2003).
    [CrossRef]
  3. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287-2289(2008).
    [CrossRef] [PubMed]
  4. S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817-1830 (2009).
    [CrossRef] [PubMed]
  5. T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
    [CrossRef]
  6. M. Attia and J. M. C. Jonathan, “Anisotropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85-90 (1983).
    [CrossRef]
  7. G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [CrossRef]
  8. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  9. Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
    [CrossRef]
  10. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
    [CrossRef]
  11. M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992-6997 (2003).
    [CrossRef]
  12. M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
    [CrossRef]
  13. J. Anagnostis and D. Rowe, “Replication produces holographic optics in volumes,” Laser Focus World 36, 107-111 (2000).
  14. M. T. Gale, “Replicated diffractive optics and micro-optics,” Opt. Photonics News , 24-29 (2003).
    [CrossRef]
  15. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).
  16. H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
    [CrossRef]
  17. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E76, 021701 (2007).

2009 (2)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817-1830 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E76, 021701 (2007).

2006 (3)

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
[CrossRef]

2005 (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

2003 (3)

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992-6997 (2003).
[CrossRef]

M. T. Gale, “Replicated diffractive optics and micro-optics,” Opt. Photonics News , 24-29 (2003).
[CrossRef]

G. Cincotti, “Polarization gratings: Design and applications,” IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

2002 (1)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

2001 (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
[CrossRef]

2000 (1)

J. Anagnostis and D. Rowe, “Replication produces holographic optics in volumes,” Laser Focus World 36, 107-111 (2000).

1983 (2)

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
[CrossRef]

M. Attia and J. M. C. Jonathan, “Anisotropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Anagnostis, J.

J. Anagnostis and D. Rowe, “Replication produces holographic optics in volumes,” Laser Focus World 36, 107-111 (2000).

Attia, M.

M. Attia and J. M. C. Jonathan, “Anisotropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
[CrossRef]

Callan-Jones, A.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Carbone, G.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Cincotti, G.

G. Cincotti, “Polarization gratings: Design and applications,” IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Crawford, G.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Eakin, J.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Escuti, M. J.

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287-2289(2008).
[CrossRef] [PubMed]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E76, 021701 (2007).

Gale, M. T.

M. T. Gale, “Replicated diffractive optics and micro-optics,” Opt. Photonics News , 24-29 (2003).
[CrossRef]

Hasman, E.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
[CrossRef]

Hoke, L.

Honma, M.

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992-6997 (2003).
[CrossRef]

Jonathan, J. M. C.

M. Attia and J. M. C. Jonathan, “Anisotropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Kimball, B.

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Kleiner, V.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
[CrossRef]

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E76, 021701 (2007).

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Kwok, H. S.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817-1830 (2009).
[CrossRef] [PubMed]

Nikolova, L.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
[CrossRef]

Niv, A.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

Nose, T.

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992-6997 (2003).
[CrossRef]

Oh, C.

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

Pelcovits, R.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Radcliffe, M. D.

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Rosenblatt, C.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
[CrossRef]

Rowe, D.

J. Anagnostis and D. Rowe, “Replication produces holographic optics in volumes,” Laser Focus World 36, 107-111 (2000).

Sarkissian, H.

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817-1830 (2009).
[CrossRef] [PubMed]

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. Kimball, “Polarization insensitive imaging through polarization gratings,” Opt. Express 17, 1817-1830 (2009).
[CrossRef] [PubMed]

Todorov, T.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
[CrossRef]

Tomova, N.

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
[CrossRef]

Zeldovich, B. Ya.

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

Zhu, M.

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

M. Zhu, G. Carbone, and C. Rosenblatt, “Electrically-switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal,” Appl. Phys. Lett. 88, 253502 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Cincotti, “Polarization gratings: Design and applications,” IEEE J. Quantum Electron. 39, 1645-1652 (2003).
[CrossRef]

J. Appl. Phys. (1)

G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process,” Jpn. J. Appl. Phys. 42, 6992-6997 (2003).
[CrossRef]

Laser Focus World (1)

J. Anagnostis and D. Rowe, “Replication produces holographic optics in volumes,” Laser Focus World 36, 107-111 (2000).

Mol. Cryst. Liq. Cryst. Bull. (1)

H. Sarkissian, B. Park, N. Tabirian, and B. Ya. Zeldovich, “Periodically aligned liquid crystal: potential application for projection displays,” Mol. Cryst. Liq. Cryst. Bull. 451, 1-19(2006).
[CrossRef]

Opt. Commun. (4)

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192, 169-181 (2001).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45-54 (2002).
[CrossRef]

T. Todorov, N. Tomova, and L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123-126 (1983).
[CrossRef]

M. Attia and J. M. C. Jonathan, “Anisotropic gratings recorded from two circularly polarized coherent waves,” Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photonics News (1)

M. T. Gale, “Replicated diffractive optics and micro-optics,” Opt. Photonics News , 24-29 (2003).
[CrossRef]

Phys. Rev. (1)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E76, 021701 (2007).

Other (1)

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometric configuration of writing and diffracted beams: (a) recording of the MG, (b) diffraction on the MG, (c) imprinting, and (d) diffraction on the IG.

Fig. 2
Fig. 2

Microstructure photos of the (a) MG and (b) IG taken under polarizing microscope. The horizontal frame size is 720 μm . The inserts show the diffraction orders originated from the respective grating. Both photos were captured at the same distance between the grating and the screen.

Fig. 3
Fig. 3

Transmission spectra of the master and imprinted OAGs.

Fig. 4
Fig. 4

(a) Transmission spectra of the IG prepared from the same MG at different spin-coating speeds of the LCP layer for 60 s : 1–1000, 2–2000, 3–3000, 4–4000, and 5 5000 rpm . (b) Peak wavelength of IGs as a function of the spin-coating speed of the LCP layer applied for 60 s .

Fig. 5
Fig. 5

Photos of diffraction of a linearly polarized He–Cd laser beam of 325 nm wavelength on an IG fabricated with different spin-coating speeds of the LCP layer and using the same MG: (a) 5000, (b) 4000, (c) 3000, (d) 2000, and (e)  1000 rpm .

Fig. 6
Fig. 6

Photos of diffraction of a linearly polarized laser beam of 476 nm wavelength on IGs imprinted with the same MG at different speeds of spin coating: (a) 5000, (b) 4000, (c) 3000, (d) 2000, and (e)  1000 rpm .

Fig. 7
Fig. 7

Transmission spectra of multilayer IGs comprising (a) one, (b) two, (c) three, (d) four, (e) five, and (f) six layers of LCP.

Fig. 8
Fig. 8

Peak diffraction wavelength of IG as a function of the number of LCP layers.

Metrics