Abstract

The governing equation of the slowly decaying imaginary distance beam propagation method (SD-ID-BPM) is further modified, for calculating the eigenmodes in optical fibers and waveguides. Its convergence is analyzed in detail and compared to the earlier version of SD-ID-BPM and other methods. It is demonstrated that the method described here can converge to the same desired accuracy within fewer propagation steps than the earlier version of SD-ID-BPM and other methods. Since the governing equation of the SD-ID-BPM is a partial differential equation with higher order derivatives, it might be interesting if the discretization in the transverse xy plane is performed by applying the numerical techniques for partial differential equations with higher order derivatives.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved beam propagation method equations

Enrico Nichelatti and Giulio Pozzi
Appl. Opt. 37(1) 9-21 (1998)

Wide-angle beam propagation method without using slowly varying envelope approximation

Khai Q. Le and Peter Bienstman
J. Opt. Soc. Am. B 26(2) 353-356 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription